
UNLIMITED156

AflhlilliBReport No. 90011

cr) ROYAL SIGNALS AND RADAR ESTABLISHMENT,

0 MALVERN

0

CV)

AN EXAMPLE SECURE SYSTEM
(N SPECIFIED USING THE TERRY-WISEMAN

APPROACH

Author: C L Harrold

OTIC
K, E TED

~'JAN 02 19

fD~~ tt DTt7C

PROCUREMENT EXECUTIVE, MINISTRY OF DEFENCE

RSRE
Malvern, Worcestershire.

- July1990

CONDITIONS OF RELEASE
0083,i 4O BR-I 115326

*........ *.......* DRIC U

COPYRIGHT (c)
1988
CONTROLLER
HMSO LONDON

..... A* * * DRIC Y

Reports quoted are not necessarily available to members of the public or to commercial
organisations.

ROYAL SIGNALS AND RADAR ESTABLISHMENT

Report 90011

Title: An Example Secure System Specified Using the Terry-Wiseman Approach

Author: C L Harrold

Date: July 1990

Abstract

, This report presents the specification of operations for a secure document handling system (SERCUS).
The specification uses the Terry-Wiseman Security Policy Model and therefore acts as an example of the
modelling approach. The specification uses the mathematical notation Z, and consequently also acts as
an example of the use of Z in specifying secure systems. However, it must be noted that an appreciation
of SERCUS, the model and modelling approach can usefully be gained even if the formal specifications
are not read. The Terry-Wiseman Model and its interpretation are given as an Annex to this report.

A~~o;For t

~i.:: oo. 1

r, T fS CR &I

B y ------------------

Di ib,:t io:
Ac ~i..'iy (.....

Dist Special

Copyright
©Controller HMSO London 1990 --

Contents

I. Introduction

2. Modelling Approach
2.1 Overview of the Model
2.2 Using the Model

3. Functionality
3. 1. Documents and the Classified Document Register
3.2. Draft Documents
3.3. Windows
3.4. Contents
3.5. Journals
3.6. Cupboards
3.7. Roles and Conflicts
3.8. Useful Classifications
3.9. User Details
3.10. High Water Marks and the Trusted Functionality
3.11. Composing Transitions
3.12. Some Properties

4. Operations
4.1. Useful Schemas
4.2. Login
4.3. Logout
4.4. Creating an Untrusted Window
4.5. Creating a Draft Document
4.6. Editing a Draft
4.7. Creating a Document
4.8. Opening a Document
4.9. Regrading a Document
4.10. Keeping in the Cupboard
4.11. Finding in the Cupboard

5. Discussion

6. References

Annex A: An Overview of the Z Notation

Annex B: The Formal Model and Its Interpretation

1. Introduction

This paper formally presents a representative set of operations from the SERCUS application in terms
of the Terry-Wiseman Security Policy Model [AnnexB,Terry&Wiseman89,Terry89,Harrold9Oa].

SERCUS is one aspect of the SMITE programme [Bottomley&Wiseman88,Harrold89]. SMITE is
addressing the problems of the provision of high functionality, multi-level secure systems, which
require a high degree of assurance that the desired security properties have been achieved. SERCUS is a
research implementation of a multi-level secure workstation running a classified document handling
system, whose purpose has been to show the soundness and feasibility of the SMITE Approach.

The requirements of SERCUS were originally specified, using the formal notation Z, in [Harrold88].
This specification was produced before the modelling work was completed, and is consequently a
mixture of functionality and security requirements. The overall security requirement is that classified
information cannot be discovered by users with insufficient clearances, ie the confidentiality of
information is ensured. The consequences of this requirement on the functionality were included into
the original specification in a rather intuitive manner, and thus it is not obvious that it did uphold the
security requirement. The Terry-Wiseman Model defines what it means for a system to uphold
confidentiality in a coherent framework, and can capture the implications of the functionality
requirements upon the overall goal of confidentiality. Therefore, the SERCUS application has been
modelled using the Terry-Wiseman Model. This report provides the specification of a representative
sample of the SERCUS operations in terms of this model.

SERCUS is essentially an electronic registry system which controls the creation of, and access to,
classified documents and mail messages. In the usual way, the users are assigned clearances which limit
their ability to observe and modify the information in the system. In addition to their clearance, the users
have a designated role to play. The possible roles are security officer and ordinary user, although there
were also registry clerks in the original, longer, specification. Certain operations may only be
performed by users with the appropriate role. For example, only security officers may create nev legal
users or review journalled information and. iM the original specification, only registry clerks could
create files or add documents to files. Alth,. .- i the model does allow systems to be specified where
individuals can have more than one role, th,. . not required in the SERCUS application, and each user
is assigned a single fixed role. t i _

In addition to the roles that the humn users of SERCUS can be assigned, there are three additional
roles that certain software can possess. The first of these represents the software acting on behalf of the
system owners, for example the login software which ensures that only people with authorisation from
the owners can use SERCUS. Secondly, there is a role representing the trusted software which
maintains high water mark classifications, and lastly, a role representing software that is trusted as a
result of an evaluation process.

All users have a personal cupboard in which they may store certain kinds of objects, such as the
documents they are drafting. Whilst in the cupboard these objects may be referred to by an unclassified
name. SERCUS also maintains an unclassified list of all the finished classified documents, called the
classified document register (CDR). Users may observe the CDR and ask to read any of the documents
contained in it. An additional requirement of documents is that their classification may be altered.
However, to ensure that they are not downgraded inappropriately, a security officer and a user must
agree the new classification.

In SERCUS a journal is maintained for each document. This is used to record the interesting events that
have happened to the document, for example which users have accessed its contents and the users who
agreed to any alteration to its classification. In order to hold the users accountable for their actions, a
journal of the security relevant actions of each of them is also maintained. Some examples of the types
of event that this journal records are: when the users log on and off SERCUS; any documents they were
prevented from seeing because their clearance was insufficient; and any users they send mail messages
to.

When logged on to SERCUS the user is presented with a display consisting of a number of windows
[Wisemaneta188]. All the window software is completely trustworthy (a Trusted Path), but may be
used to invoke untrusted software, such as a commercial word processing package. While untrusted
software is active in a window the classification of information is prominently displayed. SERCUS
monitors the movement of objects and text between these windows and uses a high water mark
mechanism [Woodward87] to correctly maintain the classification levels. The Trusted Path has been
formally specified in [Wood88], also using the Z notation.

All windows in SERCUS are non-overlapping, or tiled. In other words, windows cannot be wholly or
partly contained within or hidden by other windows. This is because it is very important that untrusted
software cannot spoof the user in any way, for example by mimicking the Trusted Path interface and
tricking the user into revealing a password. SERCUS uses non-overlapping windows because they are
a simple way to prevent such spoofing. For example consider the following diagram, Figure 1, of a
typical SERCUS display. Both the draft document and telephone directory are being displayed and
edited using separate invocations of untrusted software, and the high water mark of each is displayc ty
the Trusted Path software above. The untrusted software is only given access to the rectangle of screen
below this classification and therefore should it try to fool the user by displaying the words 'Trusted
Path', it can easily be seen that this is within an untrusted area. Similarily, menus and dialogue boxes
always operlap a portion of the screen accessible only to the Trusted Path software.

Fiu,' 1: A typical display in SERCUS

General Documents Drafts Regrading Messages Journals
i Unclassified Trusted Path

Logout

Secret

The Telephone Director),
A Document Being Drafted

The Terry-Wiseman Model has arisen out of the SMITE research programme. It provides a framework
for defining the security requirements of a system in terms of its functionality, and can therefore provide
a formal coherent framework for discussions between the customers, designers and developers of a
secure system, helping to ensure that they all interpret the requirements in the same way. The formal
model and its interpretation are given as Annex B, which is essentially section 3 from [Harrold90a].

The main area that Terry-Wiseman addresses is that of maintaining the confidentiality of information, in
other words ensuring that unauthorised people cannot discover classified information. In addition,
Terry-Wiseman provides for the integrity of the controls used to enforce confidentiality. It is an
important feature of the model that both the information and its controls are described in such a way that
the interactions between them can be considered. The model also permits alterations to security controls,
and enforces n-man rules (separation of duty) to ensure that all such changes are appropriate. One of the
major contributions of the model is that it identifies the particular aspect of trust that software must be
shown to uphold, when implementing operations that could affect the confidentiality of information.

' A Trusted Path is a validated link between the human user and a system's trusted software which mutually authenticates
both parties.

The specification language used throughout this report is Z [Spivey88,Kingetal87]. An overview of the
notation is given in Annex A. This report is in fact a fully typechecked Z document
[Sennett87,Randel190], in the form of separately type checked modules of Z. Each module is defined
using a 'keeps' statement which lists the items to be made available to other modules. The modules'used' by a piece of Z are included at the start and appear in the text with a box drawn around them, for
example,

I SomeZ :Module

For ease of reading, this is generally followed by a list of the Z definitions of interest that are imported
from the module. This report therefore also acts as an example of the use of Z, and the advantages of a
modular system for specifications.

Following this introduction, section 2 outlines the model and the approach taken for the specification
exercise. The objects required in SERCUS are formally defined in section 3. Section 4 provides the
operation specifications for a representative sample (of ten) of the operations in SERCUS. These are the
operations to login and logout; create a window; create and edit draft documents; create, open and
regrade classified documents; keep objects in the cupboard under a name and find named objects from
the cupboard. Section 5 discusses some of the implications of the operation specifications, the
operations that have been omitted and a summary of the modelling exercise.

It must be noted that although sections 3 and 4 do contain the formal specification, they also contain
descriptive English text and diagrams. However, for those readers unsure of Z, it must be noted that an
appreciation of SERCUS, the model and modelling approach can usefully be gained even if the actual
formal specifications are not read.

3

2. Modelling Approach

2.1 Overview of the Model

The Terry-Wiseman Security Model considers that the state of any computer system can be captured by
the relationships between sets of entities and attributes. Entities represent the containers of information,
and are alterable objects in that their contents may change. Entities can represent containers at any level
of abstraction, for example individual register locations, documents or directories. Attributes are
immutable objects and represent the information itself, for example the integer 42 stored in a register,
the textual contents of a document, the file names in a directory or a classification such as 'confidential'.
Writing to a register is modelled as replacing it's contents attribute with another and not by altering the
meaning of its initial contents. Similarly if the classification of an object is changed, this is modelled by
replacing its classification attribute with another.

The relationships between entities and attributes may only be altered by state transitions. Furthermore,
state transitions are modelled as having been initiated by a set of entities, called the requestors. This is a
set, rather than a single entity, in order to capture the notions of separation of duty. Two further sets of
entities are important when considering the information flows arising from a state transition. These are
the observed and modified entities. The observed entities are those whose contents were in any way
involved in the outcome of the transition. The modified entities are those whose view of the state, ie
their attributes, were altered by the transition.

As mentioned earlier the model is concerned with ensuring that the confidentiality of information is
upheld. In other words controlling the flows of information that take place whenever a state transition
occurs. Thus, some of the attributes of entities are identified as control attributes, for example, the
classification, degree of trust or role. Relations and functions are defined on the state to discover these
security relevant attributes of an entity. These attributes are used to decide whether or not a particular
transition is allowed. For example, a transition to copy attributes from a secret container to an
unclassified container would not uphold the confidentiality requirement and would not be allowed to
take place.

The protection mechanism in Terry-Wiseman is entities with control attributes, and therefore there are
potential signalling channels through the existence and controls of all entities. It is always possible to
probe a protection mechanism and discover 'something' about the controls. Consequently, the Terry-
Wiseman Model makes the simplifying worst case assumption that the existence and control attributes
of all entities are freely visible. Thus there is a further constraint on transitions to ensure that the
existence and controls of entities are not being used to signal information, ie are not classified.

There are five axioms controlling the various types of information flows arising from transitions, and
these are fully described, both formally and in English, in Annex B. Thus the security requirements are
captured by modelling secure transitions, ie defining the ways in which entities may gain or lose
attributes and the conditions under which they may be created or destroyed.

2.2 Using the Model

Essentially the modelling approach is to specify the objects required by the system in terms of entities
and attributes, as is done for SERCUS in section 3. This can be considered to be typing and structuring
the abstract definition of a system given in the general model. Each of the required operations of the
system may then be specified in terms of the changes it makes to the relationships between these entities
and attributes, as a state transition. In other words, an important step in the modelling approach is to
specify exactly what the desired functionality of the system should be. This is done for the subset of
SERCUS in section 4. The definition of the desired functionality is then combined with the security
axioms of the model, resulting in the specification of a secure transition.

However, not all the required functionality results in a useful specification. Where the specified
functionality is contradictory to the definition of security, the precondition of the secure transition
becomes false, and the transition can never take place. Therefore, in some cases the required operation
has to be specified as a sequence of individually secure transitions, separating out the flows of
information or downgrading it. Where the functionality requirement is in fact 'insecure', the

4l

requirement can either be altered, or the 'insecurity' considered to be not a risk, and documented
accordingly in the system development.

It is not a particularly difficult task to see where the desired functionality is contradictory to the
definition of security. Each of the axioms of the model can be considered in turn, and its implications
examined. It is not always necessary to have a complete formal specification of the desired operation to
see the security implications in terms of the model. The simple rule is that the system is secure, in terms
of confidentiality, if the classification of modified entites dominates the observed information, ie there is
no downward flow. Should this not be the case, and the operation still be desired, Terry-Wiseman
requires that a justification for the downward flow be given in the form of separation of duty
considerations. Note that this does not always require the physical cooperation of n-people every time
the transition is invoked but can be 'delegated' to trusted software [Harrold9Ob].

. . n m m , m m mm m mma mmmamm no i mmn ll mlI" I

3. SERCUS Functionality

This section describes the objects required in SERCUS in terms of entities and attributes, and
gives a brief explanation of their desired properties, Essentially this section is typing and
structuring the abstract sets of entities and attributes that were introduced in the policy model
(Annex B). The English descriptions generally precede the formal Z specification, and, where
words are in italics they refer to the formal definition.

First the definitions of entities and attributes, state transitions, etc, and the definition of a total
ordering (not in the type checker's library) are included into this section by the the appropriate Z
modules (as discussed in section 1).

[policy model :Module defns not inlibrary .Module
Defines Defines

E, A, REF, ROLE, CONFLICT, total-order
conflict roles, CLASS, >=, GLB
LUB, 15, TRANSITION, T, entities

3.1. Documents and the Classified Document Register

As in the paper world, all documents in SERCUS are centrally recorded on a Classified
Document Register (CDR), and documents may be uniquely identified by their CDR number.
The requirement is that the CDR numbers and the classification of documents are not
themselves classified. Thus, an entity to model the CDR and a set of attributes to represent the
CDR numbers are identified. The ordering on CDR numbers is given by newer.

CDR: E
CDRNUM. •P A

_ newer _ : totalorder, CDR NUM]

A set of attributes to represent the entries in the CDR is identified. The particular reference and
CDR number can be discovered from an ENTRY attribute by the function entry. This is an injective
function (one to one) as the CDR numbers and references are unique to each ENTRY attribute. The
requirement is that the CDR only contains references to documents and not to any other types of
object, and hence the function is not surjective (onto).

ENTRY: A

I entry: ENTRY>-+ (CDRNUM x REF)

It is important to note that the structure of information in the CDR is captured by modelling ENTRY
attributes and a function to reveal the structure, rather than the CDR simply containing CDR
number and reference attributes. This is because the latter approach would not yield the
structure and association between the CDR numbers and particular references, and, more
importantly any alteration in the relationship between CDR numbers and documents would not
result in a change in the functionality relationships between entities and attributes. In other
words, there would be no change in the Other relation from the STATE schema and the change
would not be captured by the model's definition of a transition. This technique of defining
functions on attributes to reveal structure is used fairly extensively, and is further discussed and
illustrated in section 5.

A set of entities is identified as representing documents. The requirements of documents are
that they have attributes representing their CDR number, textual contents and a journal in which
to record the interesting or security relevant events that have happened to them. Textuz2
contents are modelled using TEXT attributes, see section 3.4, and journals are discussed in section
3.5. Documents are also required to be regradable. However, to ensure that the new
classification is appropriate, regrades must be approved by both a security officer and a user.

DOCUMENT. P E

6

An addi anal requirement of documents is that they have unalterable contents. This is
analogous to not allowing Tippex (or any other brand of typing correction fluid) nor writing in
the margins in the paper world. Consequently, no transitions will be specified which change the TEXT
attribute of a document. Another consequence of this requirement is that any references in the
text of documents are only to unalterable objects. Thus documents may only contain references
to other documents.

3.2. Draft Documents

Documents will be created from draft documents. Thus, drafts are basically documents that
have not yet been given their final classification. A set of entities is identified to represent
these drafts.

DRAFT: P E

Since the users of SERCUS may type in information up to their clearance, draft entities will be
classified (ie their contents protected) at the clearance of the particular user. However,
SERCUS requires that users be able to create documents lower than their clearance, and
therefore maintains a high water mark for each; draft which monitors the classification of
information that it may contain. The draft may then be turned into a new document with an
appropriate classification between the high water mark and the clearance of the user. See
section 3.10 for the properties and maintenance of high water marks.

3.3. Windows

The users of SERCUS perform operations in the windows of a display, ie windows model the
software running in the computer which is the proxy of the human user. Thus windows are
modelled as active entities, the classification and roles of which wifl generally be those of the
user in question. Windows will also be labelled with the id of the user they belong to, and one of
their functionality attributes will be details about the user (see section 3.9). The TRUST attributes of
the window will depend on the trustworthiness of the particular software in control. For
example, a Trusted Path window is faithful and don: signal (as defined in Annex B) since it is
known that its actions originate from the human. An off-the-shelf word processing package
would not be given any TRUST attributes as no guarantees can be made about what it actually
does. Whenever such untrusted software is in control of a window the classification of the
information it has accessed will be monitored using a high water mark (see section 3.10). A set
of entities is identified as representing windows.

WINDOW : FP E

3.4. Contents

Some objects in SERCUS, eg documents and windows, contain textual contents which is a
mixture of both references to further objects and characters. The set of attributes which
represent this text is identified.

TEXT: P A

The ability to discover the set of references contained in some text is required, and refs of is
identified for this purpose. This is a function since a TEXT attribute may contain only one set of
references. It is a total function as all possible TEXT attributes are representing some set of
references, possibly the empty set. The function is not injective (one to one) as each set of
references may be viewed as contained in many texts, for example by altering and changing
orders of characters or simply altering the order of the references as they appear to users. The
function is not surjective (onto) as not all possible references may be in text.

I refsof: TEXT -4 P REF

Note that further functions could be defined to discover more about the representation of a TEXT
attribute, for example the textual characters or the order of references. However, at this high

level of specification, simply knowing which references are available in the text and being able
to notice whenever any changes are made is sufficient.

A particular TEXT attribute to represent blank text is identified. There are no references
associated with blank text.

blanktext : TEXT

refs of(blanktext) = {}

In many operations information is added to the text of an object, ie the original TEXT attribute of an
entity is replaced by one representing more. The relations merge and add are defined for this
purpose. Figure 2 illustrates the properties specified about these relations. Thus when texts are
merged there are a number of possible resulting texts, each of which contain all the references
from the unmerged texts but which differ in their orderings, etc. Similarily there are a number of
ways references can be added to text.

Figure 2: Merging TEXTs and Adding References to TEXT

TEXT I TEXT 2 TEXT 3

REF a REF a

merge REF b REF d REF b
REF c REF c

REF d

TEXT] TEXT4
1% I REF d

add REF a {REFd I REF a
REF b IREF b
REF c REF c

RE~c etc

merge is a relation because there are many different ways of merging the same texts. However,
at this level of specification the only interesting property of a TEXT attribute representing the
result is that the set of references is t,.e union of the individual sets.

merge P TEXT 4--> TEXT

V t: P TEXT; r : TEXT I (t,r) e merge * refs of(r) = U refs _ofU t

Similarly, add is the relation which identifies the various texts that can result from adding a set
of references to some text. Again, the only interesting property at this level of specification is
that the references in the resulting text are the union of the original with the added set.

add: (TEXT x P REF) * TEXT

V t, r. TEXT; set : P REF I ((,set),r) E add .
refs of(r) = refs of(r) u set

As with the contents of the classified document register, the text of objects is another case
where modelling information by simply associating attributes for the references and characters
would be insecure because alterations in structure and ordering would not be captured by an),
changes in the functionality relation.

3.5. Journa'k

In SERCUS some objects maintain a journal of the interesting or security relevant events that
have happened to them. The security relevant operations that each user performs are also
recorded. Thus, the set of all possible jou"nal entities and the set of all possible event attributes
are introduced. The representation of events indicates the particular user, type of event, time,
etc, but is not of interest at " ..; level of the specification. However, it is important that
operations at these lower levels of abstraction preserve the 'attributeness', ie immutability, of the
higher level abstraction. For example, altering the type of the event at the lower level of
abstraction must result in a different EVENT attribute at the higher level, so that the cl..age is
captured by the transition axioms and the security implications can be considered.

JOURNAL: IP E
EVENT: P A

Journals must be classified system high, or top (see section 3.8) as they may be written to
whenever operations are performed, or sometimes when only requested, by both trusted and
untrusted software, and with a wide range of clearances. This potential signalling channel was
highlighted by the modelling exercise. Journals are not active entities requiring role or trust
aitibutes.

Since journals are highly classified the requirement to audit them, ie observe their contents,
needs to be thoroughly considered. The simplest solution is for certain users, for instance an
auditor or security officer, to log in with a clearance of top. However, this would mean that this
user is cleared to see all information in the system, which is not generally required. It is not
appropriate to downgrade the journal itself, as this then allows untrusted lowly classified
entities to observe its contents and potentially receive any encoded information. The approach
taken by SERCUS is for the observation of a journal to be modelled by a sequence of transitions
which create an entity classified top, copy in tht relevant information from the journal, downgrade
this new entity to a suitable classification, for example 'Auditor' or 'Security Officer Eyes Only , and
then copy it into a Trusted Path window for the human user to review.

3.6. Cupboards

The users of SERCUS each have a personal cupboard in which they may store objects, such as
documents and draft documents. Whilst in the cupboard these objects may be referred to by a
name. Thus, cupboards are containers of information and are modelled as entities. The set of all
possible cupboard entities is identified. Cupboards contain name and reference associations, and
a set of attributes is identified as representing all possible items in the cup" "ard.

CUPBOARD: F E
ITEM : FP A

The set of all possible names for items in a cupboard is introduced as a basic type, and a
function defined, item, to associate ITEM attributes to the name-reference pair they are
representing. This is a total function as every ITEM attribute is representing a single
name-reference pair. It is injective (one to one) as each pair is unique to an ITEM attribute. Note that
not all possible references may be kept in cupboards, and hence the function is not surjective
(onto).

[NAME I

I tem : ITEM >4 (NAME A REF)

The additional requirement of a cupboard is that the names and references in it are not
classified themselves, although the referenced objects may be. Thus, cupboards will be
unclassified entities. There is no requirement to regrade a cupboard, and nor are cupboards
active entities requiring roles or trust attributes.

_ 9

3.7. Roles and Conflicts

There are only two possible roles of the human users of SERCUS, namely security officers and
ordinary users. ROLE attributes are identified to represent these. Note that in SERCUS there is
no requirement for a human user to play both roles.

sso, user: ROLE

As stated earlier, regrading a document requires that both a user and a security officer agree that
the new classification is appropriate. Thus, it is useful to identify a CONFLICT attribute to represent
these roles.

souser : CONFLICT

conflict-roles(sso-user) - { sso I- 1, user i 11

The role of software acting on behalf of the system owners, for example the login software, is
identified. Alterations to certain controls are justified by agreement with the system owners
(see section 4.2), and therefore two further attributes are identified. These specify that
agreement between the owner's proxy and a user, and the owner's proxy and a security officer are
required.

system owners_proxy : ROLE

owneruser, ownersso : CONFLICT

conflictroles(owneruser) = { systemowners.proxy 4 1, user - 1 }
conflictroles(ownersso) = { systemowners..proxy '4 1, sso F 1 }

Where there is no requirement to alter any of the control attributes of an entity, the conflict is
specified as requiring the agreement of at least one of all possible roles (and not just the roles
that are identified for SERCUS). To guarantee this lack of agreement to a change, one of these
roles would be represented by some trusted software which never agreed to anything.

noalteration : CONFLICT

dom (conflict.roles(no-alteration)) - ROLE

Some changes to the classification of an entity will be performed on the basis of its high water
mark classification. For example a document may be given a final classification lower than the
clearance of the user but no lower than the high water mark of the draft it was created from. This
downgrade is justified by the separation of duty between the particular user and the trusted
software which maintains high water marks. Thus, a ROLE attribute to identify the software
managing the high water marks and two CONFLICT attributes are identified. These specify that
agreement between the high water mark manager and a user, and the high water mark manager
and a security officer are required.

hwm manager : ROLE

hwm user, hwmsso : CONFLICT

conflictroles(hwmuser) - { hwmmanager 14 1, user 4 1)
conflict.roles(hwmsso) = { hwm manager '4 1, sso ') 1I

In some cases changes to classifications are necessary to provide the desired functionality, but
cannot be justified using high water marks. This is modelled by requiring that the evaluator
agree with the system designers that the justifications are acceptable. Thus the evaluator role
and an appropriate CONFLICT attribute are identified.

evaluator : ROLE

10

the-evaluator: CONFLICT

conflict roles(the_evaluator) = { evaluator 4 I

It is useful to note that the evaluator role indicates an assurance issue and the system owners
role an operational issue. Thus, for example, the evaluator provides assurance to the system
owners that the login code works correctly, but is not aware of the users authorised by the
system owners to login using this code. The use of the evaluator role is further discussed in
section 5.

3.8. Useful Classifications

The following classifications are useful to define; bottom is the classification that is dominated by
all other classifications; unclassified is the lowest classification possible for information in
SERCUS, ie is dominated by all classifications except bottom; and top is the highest classification.
For completeness, the classification of the greatest lower bound, GLB, and least upper bound, LUB,
when applied to empty sets are defined.

bottom, unclassified, top : CLASS

V a : CLASS • a >= bottom
top >= a

unclassified > = bottom
V c : CLASS I c * bottom - c >= unclassified

GLB { = top
LUB {} = bottom

3.9. User Details

A subset of all possible attributes is identified as representing information about the legal users
of SERCUS. In the usual way passwords are required to authenticate the users when they
request to login to SERCUS. Thus the set of all possible passwords are introduced.

USER : FP A
[PASSWORD]

The following schema, USERDATA, contains the information that the USER attributes are
representing. This is the user's identity (which must be unique to them), their password, clearance
and role, a reference to a journal of their security relevant or interesting activities and the
reference to their cupboard entity. Ensuring that each user has a different cupboard, unique
identity, etc, is discussed in section 5.

USERDATA

uid : ID
password : PASSWORD
clearance: CLASS
role : ROLE

journal, cupboard : REF

A function, user data, is defined to discover this representation of a USER attribute. This is a total
function as each-USER has a single representation and there are attributes for all possible users.
It is injective (one to one) so that each USERDATA is only representing a single user.

I user data.: USER)4 USERDATA

The systems owners cannot be present to agree, or otherwise, every request to use their system.
Therefore they set up a system of separation of duty using trusted software acting on their behalf

and passwords to authenticate the users. This trusted software is modelled by the LOGIN entity
which has as its functionality, attributes for all the legal users of SERCUS. The integrity of this
user data is vital to the secure operation of the system, and can be modelled by the absence of
undesirable functionality transitions. In other words, there will be no transitions, other than
logging in and creating new users, which observe or modify this data. This integrity requirement
is discussed further in section 5.

LOGIN: E

3.10. High Water Marks and the Trusted Functionality

As mentioned earlier, SERCUS maintains high water marks to monitor the activities of
untrusted software and subsequently to justify some downgrades. Thus, a set of attributes are
identified as modelling high water marks and a function defined, class of, to supply the particular
classification associated with the high water mark. This is a total function as all high water
marks have a classification. Also, several high water marks may have the same classification,
and not all possible classifications need necessarily be associated with high water marks.

HWM: IP A

I class-of: HWM -4 CLASS

Note that high water marks have been identified as a separate set from the classification
attributes. This is to enable there to be other classification attributes, for example the required
classification of a new document, amongst the functionality attributes of entities without the
dangers of confusing them in the design or implementation. In addition merging entities together
may be modelled.

The use of high water marks to justify downgrades can itself only be justified when they are
correctly maintained. The general requirement is that whenever an entity with a high water
mark is modified, the high water mark is raised to the level of the high water marks, or
classifications as appropriate, of all observed entities. This is a property required of all
transitions, and, in the same way as the security requirements of the policy model, this is
specified as an axiom defining constraints on state transitions, called Trusted Func. In order to
simplify the specification this axiom splits the functionality relation, ie the Other part of the STATE
schema, into two, namely high water marks, Hwm, and the remainder, Func.

It is useful to remember that the policy model defines a TRANSITION to be a request, r?, consisting
of those entities which requested the transition and those which were observed, together with
the STATE of the system before and after the transition, s and s" respectively. Also note that the
definition of modified includes any newly created entities, but excludes those destroyed by a
transition.

It is not required that all entities in the state have high water marks, hence Hwm is partial. However,
whenever any entity with a high water mark is modified by a transition, the high water mark ought
to be raised to reflect the classification (or high water mark if they have one) of all observed entities.
If the high water mark is not raised in this way, then the evaluator must have been involved in
the transition and agreed that this downgrade was appropriate. High water marks cannot be
removed from entities.

The high water mark of an entity may only be altered if some of its other functionality attributes
were also altered. The Trusted Func axiom ensures that whenever an operation specifies
alterations to the functionality of some entities, associated high water marks will be raised
correctly. It is not appropriate to explicitly state in all operation specifications that the high
water marks of all other entities are not changed. Any changes to these high water marks would
have obeyed all the axioms, however the requirement is that the high water marks only exist to
monitor modifications to the remainder of the functionality.

12

Trusted Func
TRANSJTION
Hwm, Hwm' E -+ HWM
Func, Func': E 4- A

Hwm = s.Other HWM
Hwm "= s'.Other t HWM
Func = s.Other HWM
Func' = s'.Other , HWM

V m•modified •
m r dom Hwm'

(-, (Hwm'(m) >= LUB class or hwmi r?.observed u {m} J)
* evaluator r s.Role r?.req-uestors

)
m e doam Hwm4

m e dom Hwm'
Hwm(m) * Hwm'(m) 0 (Funcli{ml] * Funcl{m}I)

where
modified == dora (s'.Other T s.Other) r) entities s"
classorhwm == s.Class E (Hwm l class of)

3.11. Composing Transitions

Some operation requirements cannot be modelled as a single transition as this would violate the
no flows down security axiom. In these cases the requirement has to be modelled as a sequence

of transitions separating out the flows of information or downgrading information. A desire for
functional integrity requires that information be passed between these transitions to ensure that
later transitions in the sequence act upon the results of previous ones. The level of abstraction of
this specification is not concerned with the details of which attributes are part of this flow and
how they are used. This is an implementation issue which, to an extent, depends upon the chosen
representation of abstract attributes, and is further discussed in section 5. Therefore, this
specification simply identifies a set of attributes to represent all possible FLOW information that an
implementation could require.

FLOW: FP A

As this level of specification is not concerned with how an implementation uses flow
information, it is sufficient to simply identify in a transition specification those entities which
may be given flow information but leave the choice of attribute non-deterministic, except to the
extent that it is governed by the security axioms. In other words, the specification still identifies
all the modified entities and requires that their attributes are only derived from the nominated
observed entites and the unclassified control information.

Thus, the Functional Integrity axiom identifies the FLOW attributes from the general functionality
by a function, Flow, and uses this to identify the set of entities whose flow information was
altered by the transition, changedflows. Since Flow is a function, entities are constrained to have
at most one FLOW attribute, and as it is a partial function not all entities in the state need have FLOW
attributes. The remainder of the application functionality is identified by the Appl relation. Thus, this
axiom has further structured the functionality of the state that was defined by the TrustedFunc
axiom above.

Functional..Integrity
TrustedFunc
changed~flows : P E
Appl, Appl' : E +- A

changed flows = dor (Flow T Flow') r) entities s'
where

Flow, Flow': E -4 FLOW

Flow = Func FLOW
Flow' = Func' FLOW

App! = Func 0 FLOW
App' = Func' O FLOW

3.12. Some Properties

In order to be able to distinguish between kinds of entity, the various types defined above must
be disjoint. Attribute types need not be disjoint, as it is permissable for the same attribute to
represent different things depending upon location. For example the integer 1 may represent 'Top
Secret' when in the Class function and January when in Other.

disjoint (CUPBOARD, JOURNAL, WINDOW, DOCUMENT, DRAFT, {CDR}, {LOGIN})

The following defines section 3 to be a module of Z, and exports the definitions for use in the
operation specifications of section 4.

Functionality keeps CUPBOARD, JOURNAL, WINDOW, DOCUMENT, DRAFT, LOGIN, CDRNUM,
CDR, ITEM, TEXT, EVENT, ENTRY, HWM, USER, FLOW, NAME, item,
PASSWORD, USERDATA, refs_of, merge, add, blanktext, newer,
entry, class of, user data, sso, user, systemowners_proxy,
owner user, owner sso, noalteration, hwmmanager, bottom,
evaluator, sso user, hwm user, hwmsso, top, the-evaluator,
unclassified, TrustedFun-c, FunctionalIntegrity

14

4. Operations

This section provides the formal specification of ten of the more interesting operations in SERCUS.
Section 4.1 first defines some useful schemas that are used by the other specifications.

Each of the operation specifications begins with an overview of the functionality requirements, for
example whether the event is journalled, or what types of entity are created and where their attributes
come from. Where the requirement is slightly more complex, a diagram is given to illustrate the entities
and attributes involved in the operation and the relationships between them.

The following diagram, Figure 3, is a pictorial representation of an entity and its attributes. The entity is
drawn as a box containing functionality attributes of interest. The classification of the entity will be
written to the right of the box with its vertical position indicating the relative classification. The position
of any high water mark inside the box also indicates the relative classification. Any trust, id or role
attributes will be written to the left of the box, and the conflicts for the separation of duty controls
written below. Information will be omitted from the diagram when it is not relevant to the discussions.

Figure 3: Pictorial Representation of an Entity

TYPE OF ENTITY

Trust classification
Id functionality
Roles attributes Hwm

Conflicts

Note that any arrows between entities represent references and that dashed arrows represent the
references to entities created by the operation under consideration.

Following the overview of the operation, the functionality requirements are fully specified by a Z
schema (or several schemas). This uses the naming convention, operation.Juncionality. This schema is
not concerned with any of the security requirements, except those of an application specific nature such
as high water mark maintenance and functional integrity.

It is useful to remember that these operation requirements schemas are defining a change in the state of
the system from an initial state, s, to a final state, s'. These definitions are generally included into the
schema by the inclusion of the Trusted Func, or FunctionalIntegrity axiom from section 3, which
themselves use the definition of a TRANSITION from the model in Annex B. The entities and attributes
of interest to the particular operation specification are also identified in the signature of the schema. The
predicates of these operation schemas define how the various entity-attribute functions and relations
comprising a STATE are altered by the transition. In order for the specification to be deterministic
(which is desirable for a specification of security properties) the Z notation insists that all aspects of the
state change are defined, and not only those concerned with the currently interesting entities. In other
words, the operation specifications describe the changes that take place in the state, and also what does
not change.

Following the specification of the state change caused by the required operation, the associated
transition request is specified. In general this uses the same name as operation specification, but without
the _functionality' suffix. This schema identifies those entites that were the requestors of the transition,
together with those entities whose functionality attributes contributed to the state changes, ie the
observed entities. The specification of the desired functionality is then conjoined (anded) with the
security axioms on a transition, Security, as defined in the policy model of Annex B, and some
implications discussed.

Note that each of the following sections is an independently typechecked module of Z, and the final part
of each section is the keeps definition which exports the secure operation specification.

4.1. Useful Schemas

This section defines some general schemas that are used in operation specifications.

policymodel :Module Functionality :Module
Defines Defines

STATE, E DOCUMENT, JOURNAL, USER, user-data,
WINDOW, CUPBOARD, DRAFT, TEXT, EVENT

Several of the operations only alter the functionality aspects of the state, ie make no
modifications to the control attributes of any entities. Thus the following schema, -CONTROLS,
defines the state change which does not alter any of the control functions and relations, ie only
modifications to the Other relation are permitted.

_CONTROLS
s, s': STATE

s'.Class = s.Class
s'.Trust = s.Trust
s'.Role = s.Role
s'Jd = sJd
s'.Conflict = s.Conflict
s'.Ref = s.Ref

Operations which record events in journals will first need to identify the particular journal. The
following schemas identify the journal from a document entity and the journal from the USER
attribute of a window. Note that the first schema insists that the document has exactly one
reference to a journal amongst its functionality attributes, and the second that there is exactly
one USER attribute in the window. In other words, documents must have only one journal, and
windows must only belong to one user.

identify_documentjournal
s : STATE
document: DOCUMENT
doc journal : JOURNAL

{ s.Ref(doc.journal) } = s.OtherU {document} I s.Refl JOURNAL I

identifyuser journal
s: STATE
window: WINDOW
user journal JOURNAL

31 user: USER I user r s.Otheri{ window} I • s.Ref(userjournal) = (userda,,7(,,e)),jourr al

The cupboard entity from the USER attribute associated with a window may be identified in the
same way as the journal. Again, the schema requires there to be only one USER attribute associated
with the window.

.16

identifyuser cupboard
s: STATE
window: WINDOW
cupboard: CUPBOARD

31 user : USER I user E s.Otheri{ window }i" s.Ref(cpboard) - (user_data(user)).cupboard

The operations involving windows, drafts and documents generally require the ability to identify
the TEXT or USER attribute from amongst the general functionality attributes. It is therefore
useful to define User and Text functions as subsets of the general functionality relation, in much
the same way as high water marks and flow information were identified in section 3. Note that
this is merely a convenience and the same properties may be ensured using the 31 I * construct in the
operation specifications. Thus, User is the subset of functionality concerned with the USER
attributes of the WINDOW entities, and Text is concerned with the TEXT attribute of windows,
drafts and documents. The fact that these are functions requires that each entity has only one of
that particular type of attribute.

UsefulFunctions

:- : STATE

User : E -4 USER
Text: E -+- TEXT

User = WINDOW 4 s.Other I USER
Text = (WINDOW u DRAFT u DOCUMENT) 4 s.Other I' TEXT

At the level of abstraction of this specification, there are no constraints about the particular EVENT
attributes that are used to modify journals. It is therefore convenient in an operation
specification to be able to simply identify the set of journals that are updated, update journals below,
and leave the choice of attribute to a lower level of abstraction (except to the extent that it must
obviously be governed by the security axioms).

Update Journals
S, S' : STATE
update journals : P JOURNAL

V journal : update journals •
3 event : EVENT • s'.Otherl {journal)} I = s.Otherf {journal} I u { event }

Note that the above technique would be less 'clean' to specify if journals ever had high water marks
or FLOW attributes. This is because then the total change to the functionality attributes of the
journal would not simply be the addition of an EVENT attribute.

useful keeps identify documentjournal, identifyuserjournal, identify_user cupboard,
h-CONTROLS, Useful_Functions, Update-Journals

4.2. Login

poliy_,mdel:Moule Functionality Module [seful Module
Defines Defines Defines
ID, CLASS, entities, Functional-Integrity, UpdateJournals
R,faithful, PASSWORD, JOURNAL,
dont-signal, creator, WINDOW, LOGIN, USER,
Security USERDATA, user-data,

bottom, owner-user,
owner sso, blank text,
classof, unclass/ired,
TrustedFunc, noalteration

As discussed briefly in section 3.9, a system of separation of duty is used to ensure that only
authorised users can login to SERCUS. Logging in is modelled as two transitions, the first of
which creates a new window to represent the user and the second upgrades it to the appropriate
clearance and degrees of trust. Note that there is no 'confidentiality' problem with modelling login
as a single transition where a window is simply created at the appropriate level and with all the
necessary attributes. However, the sequence of transitions is modelling the fact that the trusted
login software must only log people in in response to a request, and that people can only login if
authenticated by the login software.

Creating a window
In SERCUS, a request to login is valid if an authorised uid and password are presented, ie there is
an appropriate USER attribute amongst the functionality attributes of the LOGIN entity. The
clearance of the user and their journal are also recovered from this information so that the
window of the user is given the appropriate classification and the journal may be updated to
record the login. This is all part of the userdata representation of a USER attribute.

login request
uid : ID
password : PASSWORD

authenticate-details
loginrequest
Functional-Integrity
user: USER
data : USERDATA
userjournal "JOURNAL
clearance : CLASS

user e Appli {LOGIN} I
userdata(user) = data
uid = data.uid
password = data.password
s.Ref(userjournal) = data.journal
clearance = data.clearance

In response to such a valid request a new WINDOW entity is created. This new window is given
the role and id of the particular user and a classification of bottom (ie as yet unable to observe the
contents of any entities in SERCUS). The window is also given a high water mark attribute. The
login is recorded in the user's journal. The conflict of the window is set to allow the particular
user (who will be either a security officer or an ordinary user) and the system owners proxy
(login software) to upgrade it to the user's clearance. The window therefore needs to be given faithful
and dont.signal TRUST attributes so that it may participate in the subsequent upgrade. This can

18

be considered to be representing the fact that the software used by the human users to
authenticate,etc, themselves must be trusted to act on their behalf only.

Both the LOGIN entity and new window are modified with the appropriate flow information for
the subsequent transition to raise the classification of the window to the users clearance. This
flow information will probably represent the reference to the new window and the clearance to
give it. However, as discussed in section 3.11 and section 5, the choice of necessary sequencing
information is left to be determined by an implementation, so long as it is only derived from the
nominated observed entities and unclassified control attributes.

createwindow functionality
FunctionalIntegrity
Update Journals
authenticate details
new window: WINDOW

new window e entities s
3 new ref: REF - s'.Ref = s.Ref u { new_window F* newref }
s'.Class = s.Class u { newwindow I+ bottom }
s'.Trust = s.Trust u { newwindow -+faithful, new-window * dont signal }
s'.Role = s-Role u { newwindow + data.role }
s'Jd = s.ld u { new-window '4 uid }
s'.Conflictl {new window} I = { owner-user, ownpr sso }
{ newwindow } 4 s'.Conflict = s.Conflict
Appl' ,{new window} I = { user, blanktext }
{ user journal, newwindow } 4 Appl' = { user journal 14 Appl
class-of(Hwm'(new-window)) = unclassified
update journals = { user journal }
changed~flows = { LOGIN, new_window }

This transition is modelled as requested by the LOGIN entity, which is also the only entity

whose attributes influence the outcome of the transition.

createwindowSr? :"R

create-windowjunctionality

r?.requestors = r?.observed = { LOGIN }

Note that this first transition only has a single requestor as there are initially no active entities
in the system to represent the user. Because an entity is created, the LOGIN entity must possess
creator trust. Essentially this means that it is trusted to correctly check the uid and password
and to setup the appropriate controls on the new window. The LOGIN entity must itself be
classified bottom otherwise the no flows down axiom would prevent the above transition taking
place. This models the fact that the purpose of the login software is to ensure that only
authorised users may use the system and that there is no requirement for it to observe any
additional information. As mentioned eariler, the protection of the attributes of the LOGIN entity is
an integrity matter and requires that no inappropriate transitions are specified.

Raising to Clearance
This second transition raises the classification of the new window to the clearance of the user,
changes the conflicts to prohibit further alterations to the controls and gives it the remaining TRUST
attribute, ie creator trust. Thus, when they log in, the users of SERCUS are immediately on the
Trusted Path.

raiselevel functionality
Trusted Func
clearance CLASS
new window: WINDOW

s'.Class = s.Class 9 { newwindow * clearance }
s'.Trust = s.Trust u { newwindow * creator }
s'.Role = s.Role
s'.Ref = s.Ref
s'Jd = sJd
s'.Conflictf {newwindow} i = { noalteration }
{ new window } 14 s'.Conflict = { newwindow }4 s.Conflict
Func'-= Func

This transition is viewed as requested by the new window, which is acting on behalf of the user
who wishes to log in, and the LOGIN entity acting on behalf of the system owners. Both these
entities are also observed so that they may discover appropriate information, eg the particular
clearance, from the flow information placed in them by the previous transition.

raiselevel
r? : R
raisejleveljunctionality

r?.requestors = r?.observed = { newwindow, LOGIN }

Note that both requestors must be faithfully acting on behalf of the user and owners respectively.
In addition, they must not be using the changes of control, ic the fact that someone has logged in,
to signal any information. However, note that both entities are initially classified bottom and
therefore have no classified information to signal. The integrity requirement is that they must
also be trusted not to signal password information, etc.

So securely logging in is the secure creation of a window followed by the secure upgrade of its
controls. Note that the property of schema composition, 1, which ensures that the window,
clearance, etc, identified in the schemas are the same, also requires the requests, r?, to be renamed,
rl?, r2?, (using the subscript notation [new/old]), otherwise there would only be a single request
with contradictory definitions of the requesting and observed entities.

Login a (create window1 ib/r? 1 A Security[rl?/r?])
(raise_level[r2 ?lr?) A 3ecuritY[r2 ?r?])

Login keeps Login

4.3. Logout

Ipolicymodel :Module] Functionalit :Module [useful :Module

Defines Defines Defines
R, Security TrustedFunc, WINDOW Update Journals,

identifyuserjournal

Users request to logout from one of the windows of their display. The effect is that all the
windows of that user, ie they have the same ID control attribute, are removed from all the
relations and functions comprising the state. The event is recorded in the user's journal.

logoutjfunctionaliry
Trusted Func
Update Journals
window : WINDOW
identifyus'r.journal

s'.Class = destroyed 4 s.Class
s'.Trust = destroyed 4 s.Trust
s'.Role = destroyed 4 s.Role
s'Jd = destroyed 4 s.Id
s'.Conflict = destroyed 4 s.Conflict
s'.Ref = destroyed 4 s.Ref
{ userjournal 14 Func'= (destroyed u {userjournal}) Func

where
destroyed == { w: •INDOW I sJd(w) = sJd(window) }

updatejournals = { user journal }

The requestor of this transition is the particular window, and this is also the only entity whose
functionality attributes were observed. Note that since the Id of an entity is a control and the
model considers all controls to be visible and unclassified, no functionality attributes need to be
observed to find the appropriate windows to destroy.

logoutF r? :R
logoutfunctionality

r?.requestors = r?.observed = { window }

So the secure transition is

Logout a logout A Security

The no signalling axiom requires that the requesting window possesses the dont signal trust
attribute, ie logging out should not be requested by any untrusted software the use may be
running.

Logout keeps Logout

4.4. Creating an Untrusted Window

1plc~roe :Mdl usucinliy:oueeful :Module]
Defines Defines Defines

E, REF, entities, Trusted Func, WINDOW, UsefulFunctions
R, Security no-alteration, blank text,

class_of, unclassified

Once logged in, further windows may be created. Some of these will be further Trusted Path
windows and are not particularily interesting to specify as the window essentially creates a
copy of itself. Other new windows model the activation of untrusted software, such as a word
processing package, and consequently these windows will not be given any TRUST attributes. All
new windows in SERCUS inherit the clearance, role and id of the user they are representing,
and will also be given the same USER attribute as part of their functionality. SERCUS does not
require the creation of a new window to be journalled. Also, the requesting window is modified
with the reference to the new window.

The requirement for new untrusted windows is that they are initially given blank text and an
unclassified high water mark. However, in cases where the window that requests the creation of
a new window does not have an unclassified high water mark itself, the Trusted Func axiom
requires that the evaluator role agrees that this 'downgrade' is acceptable. In this case the
justification is that in all circumstances the new window is given the same attributes.
Consequently, no matter what classification of information the requesting window has accessed
it cannot encode it in the contents of the new window. Thus there is a second requestor to this
transition, namely an entity acting on behalf of the evaluator.

create untrustedJunctionality
TrustedFunc

Useful-Functions
window: WINDOW
evaluator-entity : E

B newwindow : WINDOW; new ref: REF.
new window e entities s
s'.Class = s.Class u { new window s.Class(window) }
s'.Role = s.Role u { newwindow 4 s.Role(window) }
s'.Id = sid u { new window s.Id(window) }
s'.Ref = s.Ref u { newwindow P4 newref I
s'.Trust = s.Trust
s'.Conflict { new window} I = { no_alteration }
{ new_window} 4 s'.Conflict = s.Conflict
Func' = Func u { window I) new ref,

new window blanktext,
newwindow - User(window) }

classof(Hwm'(newwindow)) = unclassified

create untrusted
r? : R
createuntrustedjunctionality

r?.requestors = { window, evaluator_entity }

r?.observed = { window }
J

So the secure operation is,

22

CreateUntrusted a createuntrusted A Security

The no signalling axiom requires that the original window be trusted not to write or encode
classified information into the existence and controls of the new window, ie the requestors
possess the dont signal TRUST attribute. They also require creator trust. Note that, as discussed
above, the use of the evaluator as a second requestor simply means that the code to create new
windows is also trusted not to include classified information in the contents attri',utes of the
new window. The use of the evaluator role is further discussed in section 5.

CreateUntrusted keeps CreateUntrusted

4.5. Creating a Draft Document

policy model :Module Functionality .Module useful .Module'

Defines Defines Defines
E, REF, R, entities, Trusted Func, WINDOW, UsefulFunctions
Security DRAFT, add, class of,

unclassified, hwm_user,
hwm sso

Drafts are documents that have not yet been given their final classification and made available
to all users by being placed in the CDR. The requirement is that, since users may type in, or
include by cut and paste operations, information up to their clearance, the draft be classified at
this level. However, it is also required that users be able to create documents lower than their
clearance, and more importantly, be able to edit them using off-the-shelf wordprocessing
packages, ie untrusted software. Therefore, a high water mark reflecting the classification of
information included into the draft is maintained. A document may be created, from the draft, at
a level lower than the user's clearance, but not lower than this high water mark.

The request to create a new draft entity is made by a window. The functionality requirement is
that the new draft initially contains blank text with an associated unclassified high water mark.
Therefore, as for creating an untrusted window, the Trusted Func axiom requires that an evaluator
agrees that this is acceptable, even when the requesting window has observed classified
information, ie has a high water mark greater than unclassified. In order to ensure the
functionality requirement that only the originator of a draft may access it in any way, drafts are
labelled with the ID of the user who created them, and this is checked for the edit and document
creation operations. The separation of duty controls on the new draft are set up to allow the
originator (who will be either a security officer or an ordinary user) and the trusted high water
mark code to downgrade it to the required level of the final document. Since draft documents are
private to a particular user, SERCUS does not require that their creation is journalled. The
reference to the new draft document is added to the text of the requesting window.

createdraftunctionaliry
Trusted-Func
UsefulFunctions
window: WINDOW
evaluatorentity : E

3 new draft . DRAFT, new ref "REF;
new text : addal {(Text(window), { new ref})} I.

newdraft e entities s
Func' = Func \ { window -) Text(window) }

u { window F- newtext, new draft 4 blanktext }
class of(Hwm'(newdraft)) = unclassified
s'.Class = s.Class u { new draft " s.Class(window) }
s'Jd = sJd u { newdraft 1- s.ld(window) }
s'.Conflictf {new draft)] = { hwm user, hwmsso }
{ newdraft } I s'.Conflict = s.Conflict
s'.Ref = s.Ref u { new-draft 14 new ref }

s'.Trust = s.Trust
s'.Role = s.Role

24

create draft
r? : R
createdraft functionality

r?.requestors = { window, evaluator-entity I
r?.observed = { window I

The secure operation is the combination of the above functionality with security.

CreateDraft a createdraft A Security

The no-signalling axiom requires that the code be trusted not to write or encode classified
information into the existence and controls of the new draft, ie the requestors possess the dont signal
TRUST attribute. The basis of this trust could be that the requesting window is part of the
Trusted Path, ie the human user requested the operation. Alternatively, the evaluator could
agree that new drafts could be created by untrusted software if they were convinced that no other
window could discover the existence of another's drafts. Note that the use of the evaluator as a
second requestor simply means that the code to create new windows is trusted not to write or
otherwise encode classified information in the contents attributes of the new draft.

CreateDraft keeps CreateDraft

25

4.6. Editing a Draft

policy_model :Module Functionality :Module useful :Module

Defines Defines Defines
R, Security Trusted Func, WINDOW, Useful Function,

DRAFT, merge -CONTROLS

Editing a draft document using an untrusted word processing package can be modelled by the
following transitions which give the untrusted software some text to edit, and then replace the
edited text into the draft entity. In between these two transitions the untrusted software may
have called any number of other transitions, for example opening a document, and the high water
mark monitors the classification of the information included in the edit by this means.

Starting the Edit
Starting the untrusted edit is modelled as requested by a window. This window takes the text
from a draft entity, and passes this text to an untrusted window (representing the active word
processing software). The TrustedFunc axiom raises the high water mark of the untrusted
window according to the high water mark of the draft. Note that a functional integrity
requirement is that only the orginator of a draft may access it, and therefore it is required that
the ID attributes of both windows and the draft entity be representing the same human user.

start edit_functionaliry
TrustedFunc
Useful_Functions
-CONTROLS
window, untrusted: WINDOW
draft "DRAFT

sJd(window) = sJd(untrusted) = sJd(draft)
3 edit text : mergel {{ Text(draft), Text(untrusted) })11o

Func' = Func \ { untrusted '4 Text(untrusted) }
u { untrusted 14 edittext }

Both the windows and the draft are observed by this transition.

start edit
r? : R

start-edit_functionality

r?.requestors = { window }
r?.observed = { untrusted, draft, window I

The secure transition is the combination of the above functionality with the security axioms.

StartEdit e start-edit A Security

Since no entities are created or destroyed by this transition, and no controls altered, there is no
requirement for the requesting window to possess any TRUST attributes. The only security
constraint is imposed by nojflows down. However, both windows and the draft will be at the same
classification level, ie clearance of the user, anyway.

Finishing the Edit
The end of an edit is modelled as requested by a window. The functionality is that the text of the
draft entity is replaced with the text from the untrusted window. As above, the TrustedFunc axiom
ensures that the high water mark is raised appropriately.

26

stop_edit junctionality
TrustedFunc
UsefulFunctions
=CONTROLS
window, untrusted : WINDOW
draft: DRAFT

sld(window) = sid(untrusted) - sJd(draft)
Func' = Func \ { draft P* Text(draft) I u { draft 4 Text(untrusted) I

stopjedit
r? :R
stop_.editjunctionaliy

r?.requestors = { window }
r?.observed = { untrusted, draft, window I

The secure transition is the combination of the above functionality with the security axioms.

StopEdit e stopedit A Security

As above, there is no necessity for the requesting window to possess any TRUST attributes.

EditDraft keeps StartEdit, StopEdit

4.7. Creating a Document

Users of SERCUS may create new classified documents from their drafts. Essentially, the requirement
is that the text of the draft is copied into a new document, and the document is given the next available
CDR number and a new journal, initially recording the creation event. A further parameter to the
operation is the required classification for the document. However, to prevent the new document from
being underclassified, this classification must not be lower that the high water mark of the draft.
Additional requirements are that users may not create documents higher than their clearance and that any
references in the text of the new document are only for existing documents, and not to any other type of
object. The reference to the new document is added to the text of the window from which the user
requested the operation. It is also required that the new document is added to the central list of
documents, ie the CDR is updated with the document reference and associated CDR number. In
addition, the creation event is recorded in the journal of the user who requested the operation. The
following diagram, Figure 4, illustrates this, and indicates which entities were observed and which
modified by the creation operation.

Figure 4: Creating a new Document from a Draft

Observed
DRAFT

clearance

TEXT Observed and Modified

wINDO

TEXT clearance
Modified Hwm

JOURNAL Top USER INFO
(eg journal ref)

V Observed and Modified
actions of the user CDR

document references
I and

Modified Modified cdr numbers

(new) (new) A • _ _ unclassified

JOURNAL Top DOCUMENT

TEXT
same as Draft classification

creation event - - CDR NUMBER

ref to its Journal

Security Officer and User

This requirement cannot be modelled as a single transition for the following important
reasons:

a) The draft document is observed to copy the text and hence the no flows-down axiom would
require that the new document could not be classified lower.

b) The greatest lower bound of the modified entities is unclassified (the CDR) and the least upper
bound of the observed is the clearance of the user requesting the operation. Consequently, the
nojflows down axiom would require that the clearance of the user when creating a document be

28

no higher than unclassified, and consequently documents could not be created higher than
unclassified.

This is not the desired functionality.

Thus, the model has highlighted the downward flows of information that occur from the requirement to
create a document. Consequently, creating a document needs to be modelled as a sequence of
individually secure transitions and the necessary sequencing information passed between them using the
FLOW attributes outlined in section 3.11. There are possibly as many sequences to choose from as
there are people to model them. However, all of these sequences will require that the information in the
draft and the update to the CDR are downgraded at some point. For instance, the draft can either be
downgraded before the document is created from it or the document created and then downgraded.
There are no 'confidentiality' considerations concerning when the update to the user's journal takes
place. However, it must be remembered that if the implementation of the EVENT attributes decides to
include the CDR number and/or document reference, this has to be allowed for in the sequencing.

1policy model -Module IFunctionality :Module Iuseful :Module
Defines Defines Defines

E, REF, CLASS, >=, R, TrustedFunc, WINDOW, UsefulFunctions,
dont signal, creator, DRAFT, refs_of, DOCUMENT, Update-Journals,
entities, Security Functional._Integrity, CDR, identify_userjournal,

the evaluator, newer, entry, ECONTROLS
Journal, top, no alteration,
sso user,unclass'fied, add

Creating a document from a draft document can be modelled by the following sequence of
individually secure transitions.

Downgrade Draft
The confidentiality controls, ie noflows down, prevent the contents of the draft entity (protected
at the clearance of the user) from being copied into a new document entity classified lower.
Therefore, the first transition of the document creation sequence, is the downgrade of the draft
entity to the required classification, so long as this is between the draft's high water mark and the
clearance of the user. This downgrade is justified by the separation of duty between the owner of
the draft and the trusted high water mark software. Also note that this may only be performed by
the user who created the draft.

downgrade draftJunctionality
TrustedFunc
UsefulFunctions
window: WINDOW
hwm man : E
draft : DRAFT
required class : CLASS

sld(draft) = sid(window)
required class > = HIIwm(draft)
s.Class(window) >= requiredclass
s'.Class = s.Class @ { draft " required-class }
s'.Trust = s.Trust
s'.Role = s.Role
s'Jd = sJd
s'.Conflict = s.Conflict
s'.Ref = s.Ref
Func = Func

.........

This transition is requested by both a window entity and an entity representing the high water
mark software. Both the window and draft may be observed. Also note that no entities are modified by
this transition, as the only alteration to the state is the new classification attribute given to the
draft entity. Therefore, as no entities or attributes are created there is no requirement to provide
other transitions in the sequence with FLOW attributes.

downgrade draft

r? : R
downgrade draftJunctionality

r?.requestors = (window, hwm man }
r?.observed = { draft, window }

Create New Document
The confidentiality controls, ie nojflows down, prevent an observed window from creating an
entity classified lower than itself, and therefore the window still cannot create a new document
from the downgraded draft. It is also not appropriate to downgrade the window as its attributes
will not then be adequately protected. Therefore, the window creates a worker entity and gives
it the appropriate information, modelled by a FLOW attibute, which will contain sufficient
information to enable the worker to perform the appropriate actions with the draft. The worker
has to be classified at the level of the window since its flow information is given to it from the
window. However, its controls are such that it may be downgraded to the classification of the
draft by an entity with the evaluator role in a subsequent transition.

create.worker_functionality
FunctionalIntegrity
window: WINDOW
identify_userjournal
worker: E

worker g entities s
s'.Class = s.Class u { worker 14 s.Class(window) }
s'.Trust = s.Trust
s'.Role = s.Role
s'Jd = s.Id
s'.Conflict = s.Ccnflict u { worker 14 the evaluator }
3 newref :REF - s'.Ref = s.Ref u { worker '4 newref}
Appl' = Appl
changedjflows = { worker]}

This transition is requested by the window entity, which is also the only observed entity.

create worl-erE r? :R
create workerjunctionality

r?.re-uestors = r?. bserved = { window }

The human evaluator, represented by an entity which is neither observed nor modified (see
Section 5, discussion), then agrees that the actions of the worker are acceptable and downgrades
it to the level of the draft, also giving it the necessary TRUST attributes. No entities need to be
modified with any flow information as no entities nor attributes are created and the worker
entity was given the appropriate information in the previous transition.

30

downgrade workerj'unctionaliby
TrustedFunc
evaluator-entity, worker : E
draft: DRAFT

s'.Class = s.Class ({ worker f s.Class(draft) }
s'.Trust = s.Trust u { worker + dont.signal, worker I creator }
s'.Role = s.Role
s'Jd = sJd
s'.Conflict = s.Conflict
s'.Ref=s.Ref
Func' = Func

downgradeworker
r?:R
downgrade.worker junctionality

r?.requestors = { evaluatorentity }
r?.observed = { worker }

The next available CDR number for the document is identified, by the next.cdr.number schema.

next cdr number
TrustedFunc
new-cdr num : CDRNUM

new cdr num e used numbers
V c : unused-numbers - c newer new cdr num

where
usednumbers == (Func S entry 9fst)[{CDR} I
unused-numbers == CDRNUM \ used-numbers

The worker then creates new document and journal entities, and sets up the controls so that the
journal can never be regraded and the document may only be regraded by agreement between a
user and a security officer. The text of the draft is checked to ensure it only contaris references
to documents and is copied into the document, along with the new cdr number and reference to
the new journal. Appropriate events are added to the user's journal and the journal of the document.
Functional integrity requires that both the worker and the window are updated with sequencing
information, ie FLOW attributes.

create document_functionality
FunctionalIntegrity
UsefulFunctions
Update Journals
worker: E
window: WINDOW
draft: DRAFT
next cdr number
document DOCUMENT
journal, userjournal : JOURNAL
doc._ref, journal_ref : REF

{ document, journal I n entities s = { }
s'.Ref = s.Ref u { document H docref, journal i journal ref }
s'.Class = s.Class u { document H s.Class(worker), journal H top }
s'.Conflictf {journal} I = { no-alteration I
s'.Conflicti {document} I = { sso_user }
{ document, journal} 4 s'.Conflict = s.Conflict
refsof(Text(draft)) s.Rej DOCUMEAT,3
Appl'I {document} I = { Text(draft), new_cdr num, journal ref }
{ document, journal, user journal } 4 Appl' = Appl
update journals = { journal, user journal }
s'.Trust = s.Trust
s'.Role = s.Role
s'Jd = s.ld
changed jlows = { worker, window I

This transition is requested by the worker entity which observes itself, the draft and the CDR.

create document
r? :"R

create documentrfunctionality

r?.requestors = { worker }
r?.observed = { worker, draft, CDR I

Note that the FLOW attribute given to the window should enable it to update its text with the
reference to the new document, although whether the implementation also wishes to supply the
window with the new CDR number as well is an application specific issue which is not of
interest at this level of specification. The information the worker is modified with should enable
it to modify the unclassified CDR with the appropriate information in a later transition.
However, although the details of which information the worker and window entities are
modified with is not specified, the security axioms require that the implemention may only use
information from the nominated observed entities and unclassified control information.

Update CDR
In order to modify the unclassified CDR the worker needs to be downgraded to unclassified.
This is again performed by an entity representing the human evaluator.

32

downgrade again unctionality
TrustedFunc
evaluator-entity, worker: E

s'.Class =s.Ciass e) 1 worker unclassified
s'.Trust s.Trust
s'.Role = sJRole
s'Jd = sid
s'.Conflict = s.Conflict
s'.Ref = sJRef
Func' = Func

downgrade _again
r? : R
downgrade again juncionality

r?.requestors I evaluator -entity
r?.observed ={worker

The worker then updates the CDR with information from its FLOW attribute, and is destroyed,
ie it is removed from all the functions and relations that comprise the state.

update cdr uncionaliry
TrustedFune
worker : E
new -cdr -num : CDRNUM
doc ref :REF

3 new entry : ENTR Y I entry(new entry) = new cdr num, doc ref)
Fuh-c'I {CDR) I =Fund I{CDR?} I u { new-en-try

I CDR 1 4 Func' = {CDR, worker } 4 Func
s'.Class = { worker 14 s.Class
s'.Trust = { worker 14 s. Trust
s'JRole = f worker 14 s.Role
s'.Conflict = { worker 1 4 s.Conflict
s'Jd = { worker) 14s.Id
s'.Ref = f worker } 4 s.Ref

update -cdr__________

r? : R
update cdr unctionaliry

r?.requestors ={worker)

r?.observed C DR, worker I

Update Window
Finally the window of the user is updated with the reference to the new document. Note that
when the worker entity created the document it modified the window with appropriate flow
information, and consequently the window is able to update itself with the correct reference.

update window_functionality
Trusted Func
Useful_Functions
_CONTROLS
window: WINDOW
docref :REF

3 new text: addl {(Text(window), { doc ref})} I"
Fun? = Func \ { window 14 Text(window) u { window H) new-text }

update_window
[_r?: R

updatewindow Junctionaliry

r?.requestors = r?.observed = { window }

The complete specification of securely creating a document is therefore the following sequence.
Note that the property of schema composition which ensures that the windows, etc, identified in
the various schemas are the same, also requires the various requests, r?, to be renamed, rl?, r2?, etc,
(using the subscript notation [new/old]), otherwise there would only be a single request with
contradictory definitions of the requesting and observed entities.
CreateDocument - (downgrade draft[rl?,r?] A Securiiy[rl?/r?])

g (create worker[r2 /r?] A Security[r2?,r?)
(downgradeworker[r3 ?lr?] A Security[r3 ?lr?])
(create documentlr4 ?,rj A Securityr4?Ir?j)
(downgrade again[r5?r?] A Security[rS?,r?])
(update cdr[r6?/r?] A Security[6?/r?])
(update window[r7?/r?] A Security,, 7 ,.)

Note that the no_signalling and Separation ofDuty axioms require that the window that the
operation was requested from be part of the Trusted path, ie possess faithful and dontsignal trust
attributes. Also, in order to be able to create the worker entity, the TrustedCreation axiom requires
that it also possesses creator trust.

CreateDocument keeps CreateDocument

34

4.8. Opening a Document

When documents are opened their text becomes available to the requesting window and the event is
recorded in both the journal of the particular user and that of the document. The no-flowsdown
security axiom will prevent the window observing documents that it is not cleared for. However, in this
case there is an additional functionality requirement that these unsuccessful attempts to open documents
should be journalled, as they may indicate that a cleared user has been subverted or was using untrusted
software containing a Trojan Horse. Note that these unsuccessful operations are not of interest to the
document, and could not be recorded in its journal anyway as the document would have to be observed
to discover the appropriate journal to update. Thus, in the unsuccessful case, only the user journal is
modified and the window observed. Also note that in the case of the successful open, when the text of
the window is merged with the text of the document, the window high water mark may be raised to
accommodate the classification of the document. Figure 5 illustrates the successful opening of a
document,

Figure 5: Opning a Document

Modified Observed
JOURNAL Top DOENT

TEXT
document history classification

A ref to its Journal

open event cdrnumbcr Observed and Modified
__________ __________ WLDOW

TEXT clearance
Modified Hwm

Top USER INFO
(eg journal ref)

actions of the user

open event

policy model :Module Functionality :Module i useful :Module
Defines Defines Defines

R, >=, Security Trusted Func, INDOW, Useful.Finctions,
Document, merge Update Journals,

-CONTROLS,
identify user journal,
identify document journalSuccessful Open

The successful open of the document is modelled as requested by a window. No security
controls are altered by the operation. The journal of the user is discovered by observing the
requesting window entity to find the USER attribute and associated journal, by identifyuser.journal,
and the journal of the document identified, by observing the document entity, by
identify document journal, as specified in section 4.1. Also the use of the Text function insists that
both the document and window only have one TEXT attribute each. The window is modified with
a new TEXT attributes which represents one of the possible ways of merging the two original TEXT
attributes, as discussed in section 3.4. Events (which could be the same attribute) are added to
both journals.

35

open docunent functionality
Trusted Func
UsefulFunctions
UpdateJournals
.CONTROLS
window: WINDOW
document : DOCUMENT
identifyuserjournal
identify_document journal

3 new text : merge[{ { Text(document), Text(window) lii.
updatejournals 4 Func' = update journals 4 Func

\ { window * Text(window) } u { window i+ newtext }
update journals { doc.journal, userjournal }

This transition is requested by the window which observes itself and the document entity. The
journals are not observed by this operation as their contents will be classified top, and therefore their
update must be implemented as a pure write. In other words, the window must be unable to
detect anything about the contents of the journal, and so, for example, the update operation must
never fail even if the journal is full.

succesful opendocument
r? : R
open document_functionality

r?.requestors = { window }
r?.observed = { window, document }

Unsuccessful Open
The attempt to open a document for which the requestor is not cleared simply records the event
in the journal of the user, again found by observing the window entity.

attempted open document_functionalit'y
Trusted-Func
UpdateJournals
_CONTROLS
window: WINDOW
document : DOCUMENT
identifyuser journal

-,(s.Class(window) >= s.Class(document))
update journals = { user journal }
update journals 4 Func' = update journals 4 Func

This transition is requested by the window, which is also the only observed entity. As above, the
update to the user's journal must be a pure write.

36

attempted opendocument
r?: R
attemptedopen document unctionality

r?.requestors = r?.observed = { window }

Opening a document is therefore the attempted transition unless the open will be successful, ie
the precondition of the successful schema is true. So, securely opening a document is

open-document a attemptedopen document e succesful opendocument
OpenDocument e opendocument A Security

OpenDocument keeps OpenDocument

4.9. Regrading a Document

The separation of duty controls on documents are set up to ensure that a user and a security officer agree
that any alterations to the classification (or other controls) of the document are appropriate. Thus, the
regrade operation is modelled as being requested by two windows. These windows both observe the
text of the document in question and agree the new classification. The journals of both users and the
document are updated to record the event.

Note that neither window is modified. This is because if the windows were both observed and
modified, in order to uphold confidentiality the noj'iows down axiom would require them to be at the
same level, and generally security officers have higher clearances than ordinary users. This illustrates
the fact that an observed requestor may potentially encode information in their decision regarding the
appropriateness of the transition. Since neither requestor is modified, they will only know their own
decision, and not whether the regrade took place. Remember the dont signal trust attribute only ensures
that the requestors are not encoding information into the new classification of the document, and not the
fact that it has been given a new classification. This could also be considered to be representing the real
world situation, where security officers do not remember the particulars of all the regrades they agree
to, but are able to look up details in a journal if necessary.

Figure 6: Changing the Classification of a Document

Modified Observed
JOURNAL Top DOCUM ENT

classification

document historyT
~ref to its Journal

regradc event
cdr number

ObservedObseved

______ __ _ t clearance
User TEXT HwAr em n TEXT I

USER INTO security Hwm

(eg journal rcf) officer USER INFO
(eg journal ref)

MIo di fi ed

JOURNAL Top Modified 1PJOURNAL Top

actions of the user
actions of the sso

regrade event
regrade event

38

policy_,model :Module Fucinality .Module [ul§Modulej
Defines Defines Defines

CLASS, R, Security Trusted Func, WINDOW, Update Journals,
DOCUMENT identifyuserjournal,

identifydocumentjournal

The regrade operation is requested by two windows, windowa and windowb. The journals of the
users associated with the two windows are discovered by observing the window, as specified in
section 4.1 Note that this requires renaming (using the subscript notation [new/old]), as the particular
schemas define window and serjournal entities. The journal of the document is discovered by
observing the document. Events (which could be the same attribute) are added to all three
journals and the classification of the document altered. As discussed above, neither window is
modified.

regrade-document_functionality
TrustedFunc
Update Journals
windowa, windowb: WINDOW
document: DOCUMENT
required classification : CLASS
identifyuserjournal [windowa/window, userajournal/userjournal]

identifyuser.journal [windowbiwindow, userbjournalluserjournal]

identifydocumentjournal

update journals = { doc journal, usera journal, userb journal }
update.journals 4 Func' = update journals 4 Func
s'.Class = s.Class E { document 4 requiredclassifi cation }
s'.Trust = s.Trust
s'.Role = s.Role
s'Jd = sld
s'.Conflict = s.Conflict
s'.Ref = s.Ref

The regrade transition is modelled as requested by the two windows. The document is observed
in order to find the appropriate journal in which to record the event, and to read the text to see if
the new classification is appropriate for it. The windows are observed, to discover the users
journals and any information such as which document to regrade, or the required classification.
However, note that the implementation does not have provide the latter information in the
window but could prompt the human user for input.

regrade document
r? :R
regrade document junctionality

r?.requestors = { windowa, windowb }
r?.observed = { windowa, windowb, document }

The secure transition is the combination of the above functionality with the security axioms.

RegradeDocument a regrade document A Security

The Separation of Duty and nosiganlling axioms will require that both windows possess faithful

39

and dont signal TRUST attributes. In other words, both windows must be faithfully acting on
behalf of different human users and not be using the change in classification to encode classified
information. The CONFLICT attribute of the document (as discussed in section 3.1 and specified
in the document creation operation) will require that one of these users possess security officer
role and the other the ordinary user role. Also note that since neither window is modified, these
users may have different clearances, although obviously both must be cleared to observe the
contents of the document.

RegradeDocument keeps RegradeDocument

40

4.10. Keeping in the Cupboard

The users of SERCUS each have a personal cupboard in which they may store documents they are
drafting and finished documents. Each item in the cupboard is given a name. The requirement is that the
names and references in the cupboard do not convey any classified information, ie in a similar way to
the CDR, the cupboard and its contents will be unclassified. To keep something in the cupboard a name
and reference are presented. The name must not already exist in the cupboard, and therefore the
cupboard needs to be observed. The window the operation was requested from is observed to discover
the user's cupboard. SERCUS does not require storing references in the cupboard to be journalled.
Figure 7 illustrates the requirement.

Figure 7: Keeping in the Cupboard

Observed and Modified Observed
CUPBOARD WINDOW

TEXT clearance
names Hwm

and
references USER INFO

(eg cupboard ref)unclassified

ENTITY

DOCUMENT classification
or

DRAFT

This requirement cannot be modelled as a single transition because the cupboard is
modified and the window observed. Therefore the confidentiality requirement, no_flows down, would
require that references could only be kept in the cupboard by unclassified windows. This is not the
desired functionality.

Thus the model has highlighted the potential leakages of information through the names and references
chosen to be put into a lowly classified cupboard. Therefore, as for creating a document, the operation
to keep a reference in the cupboard can be specified as a sequence of individually secure transitions.

lpolicymodel :Module, Fiunctionaliy :Module, useful :Module]
Defines Defines Defines

REF, E, entities, Functional Integriry, WINDOW, identify user cupboard
R, Security DRAFT, DOCUMENT, NAME, ITEM,

theevaluator, CUPBOARD, item

Storing an object in an unclassified cupboard requires that a worker entity be created and
downgraded by the evaluator, in a similar way that the worker entity was used to update the
CDR when a new document was created.

Create Worker
The cupboard of the user is identified from the USER attribute of the requesting window, and is
observed to check that the name is not already in the cupboard. A new worker entity is created
and given an appropriate FLOW attribute. This could represent the name, object, cupboard and

actions to perform with them, although the implementation could choose to prompt the user for
some of this information. The controls are set up to allow an entity representing the evaluator to
downgrade the worker to the level of the cupboard, ie unclassified, so that it may modify it.

create workerjfunctionality
FunctionalIntegrity
window: WINDOW
object : REF
name : NAME
idenifyusercupboard
worker : E

object e s.ReJ1 DRAFT u DOCUMENT I
name 9 { i : Fund {cupboard} I r) ITEM .fst(item(i)) }
worker 9 entities s
s'.Class = s.Class u { worker 4 s.Class(window) }
s'.Trust = s.Trust
s'.Role = s.Role
s'Jd = s.ld
s'.Conflict = s.Conflict u { worker 4 theevaluator }
3 newref: REF - s'.Ref = s.Ref u { worker 4 new ref
Appl' = Appl
changed_flows = { worker I

create worker
r? : R
create workerjfunctionality

r?.requestors = { window }
r?.observed = { window, cupboard }

Downgrade Worker
The justification to allow the evaluator to perform this downgrade is not trivial, as the evaluator
needs to be satisfied that the name and object chosen are not encoding any classified
information. In other words a human user must be in control of the operation, and not be
influenced by untrusted software in the choice of name and object to store in the cupboard. Note
that if the high water mark of the requesting window is unclassified the justification is easier, as
the window has accessed no classified information to encode. However, this is not expected to
be the most general case. As well as becoming unclassified the worker entity is given the
dont.signal TRUST attribute so that it may destroy itself once the cupboard has been modified.

42

downgrade-workerjunctionairy
TrustedFunc
evaluator-entity, worker :E

s'.Class = s.Class G9 1 worker Iunclassified I
s'.Trust = s.Trzsst u f worker I-) dont signal)
s'.Role = s.Role
s'Jd = sid
s'.Conflict = s.Conflict
s'.Ref = s.Ref
Func' = Func

downgrade -worker
r?:R

downgrade-workerjfunctionaliry

r?.requestors I evaluator -entity}
r?.observed ={worker I

Worker does the Work
Finally, once downgraded the worker entity updates the cupboard, and destroys itself, ie is
removed from all the functions and relations that comprise the state.

store in_cupboardjunctionalizy
TrustedFunc

J

worker: E
cupboard: CUPBOARD
object : REF
name:. NAME

3 new-item : ITEM *item(new-item) =name, object)
Func' = I worker }4 Func u {cupboard new-item}

s'.Class ={worker }4 s.Class
s'.Trust ={worker 14s.Trust
s'.Role ={worker }4s.Role
s'Jd = { worker 14 s.Id
s'.Conflict = I worker 14 s.Conflict
s'.Ref = I worker 14 s.Ref

store -in_cupboard
r?:R

store in cupboardjuncionality

r?.requestors I worker
r?.observed ={worker, cupboard}

Thus the secure operation is the sequence of secure transitions above.

StorelnCupboard a (createworker[rl?Ir?] A Securiy[r1?1r?)
(downgrade worker[r2 ?/r.] A Security [2./r2?])
(store in cupboard[r3?/r?] A Security[73?,,?])

The no signaw !'r.g .xiom requires that this sequence be initiatcd from the Trusted Path. In
addition, the justification for the downgrade requires the human evaluator to be convinced that
the human user cannot be influenced by untrusted software, in the object to store in the cupboard
and the name given to it, and have information signalled through them.

StorelnCupboard keeps StorelnCupboard

4.11. Finding in the Cupboard

1policy_!model :Module [Functionality :Module useful .Module]
Defines Defines Defines

REF, R, Security TrustedFunc, WINDOW, NAME, Useful Functions,
ITEM, add, item ECOVTROLS,

identify_usercupboard

A window requests to be given the reference stored under a given name from the cupboard. The
cupboard is discovered from the USER attribute of the window, as in section 4.1, and its attributes
examined to find the desired item. The reference is then added to the text of the window, ie its TEXT
attribute replaced with one representing its initial contents plus the reference, as specified in
section 3.4.

fromcupboard functionaliry
TrustedFunc
UsefulFunctions
-CONTROLS
window : WINDOW
name: NAME
identifyuser.cupboard

3 i : ITEM; ref: REF; new text• add[{(Text(window), {ref})} I.
i e Func {cupboard} T
item(i)= (name, ref)
Func' = Func \ { window 94 Text(window) } u { window t* newtext }

The transition is requested by the window, and the cupboard and window are the only observed
entities.

fromcupboard
r? :R
fromcupboard junctionality

r?.requestors = { window }
r?.observed = { window, cupboard }

The secure operation is the combination of the functionality above and the security axioms.

FromCupboard afromcupboard A Security

There is no necessity for the window to have any TRUST attributes as no entities are created or
destroyed, and no controls are altered by this transition.

FromCupboard keeps FromCupboard

_ _ A

5. Discussion

This section discusses some points arising from the specifications given in the preceeding sections, and
some of the less 'interesting', but otherwise useful operations that have been omitted. It concludes with
a summary of the modelling exercise.

The first point to note is that although a number of secure transitions have been specified, there has not
been a specification of an initial state. The reason for this is that the initial state is not interesting from
the point of view of modelling the operation requirements for SERCUS, except to the extent that it must
be possible for a secure initial state to exist. There are several possibilities, and for a 'real' system the
initial state would probably only contain the ability for a single valid user to login and create further
users, etc. The demonstration of SERCUS uses a 'compiler' to create the desired legal users, their
passwords, clearances and roles, cupboards, etc. Documents, drafts and messages can also be created,
using variants of the operations that work when the system is running, and placed in this 'compiled'
initial state.

Note that the requirement that all the users have a unique identity and do not share cupboards, etc, can
be ensured by performing the appropriate check in the transition to add a new USER attribute to the
LOGIN entity. It would also be necessary to ensure that no transitions are specified which alter this
information inappropriately. Thus, although an operation to allow a user to change their own password,
or an operation to alter the user's role (eg pr,.-notion) could be a requirement, it would be undesirable to
specify an operation which, for example, replaced the user's cupboard. However, it must be
remembered that these types of requirement do not effect the confidentiality of information, but are
rather requirements for functional integrity.

Mail messages and the associated operations of 'send' and 'open' have not been included in this report.
This is because they have very similar properties to the cupboards and CDR, ie the users each have a
mailbox and there is a central unclassified list of user identities and their mailboxes. Messages would be
modelled as entities with contents attributes representing the text and header information. Opening the
message would simply be a matter of the particular user observing the contents of a message entity in
their mailbox, and is essentially the same as opening a document. There would also be functional
integrity constraints much the same as those for draft documents to ensure that only the recipient could
observe the contents. Sending a message would require the user to be on the Trusted Path to ensure that
the creation of the message entity and the 'downgrade' to allow higher users to cause messages to be
placed in the mailbox of lower users are not signalling. This is similar to the downgrade to allow the
CDR to be updated when a new document is created.

The useful transitions which involve an entity observing and modifying itself have not been specified,
for example where the TEXT attribute of a window is altered as information is typed in. Also the
transitions where an entity observes something lower and updates its own attributes have not been
included, eg where a window takes a document reference from the CDR. These have been omitted
because they trivially obey the security axioms. Note that in order for the high water mark mechanism to
adequately protect the information typed in by users, it should not be classified higher than the high
water mark. However, this can only be enforced as a procedural control.

The open document transition gives an example of the way that error cases, such as attempts to cause
information to flow against the policy, can be captured and journalled. However, although no other sort
of error messages have been specified, an implementation could display error messages to the human
user so long as they did not cause the software controlling the windows to be given extra information,
ie these messages are not implemented as attributes of the window entities. Similarly, although logout
was specified as basically a search for all the windows belonging to the user in question, this could be
implemented as having a list associated with the display. This list would not be available at the abstract
level directly, ie not an attribute, as it would simply be a convenient implementation detail.

An important requirement in SERCUS is that users are able to cut and paste information between the
windows of their display and that the information included in any particular window is monitored using
high water marks. This requirement can be modelled as an unobserved window requesting that
attributes be moved between two further windows. The noflows down axiom is trivially satisfied as
all the windows will be classified at the clearance of the user. The Trusted Func axiom w. I ensure that
the high water mark of the modified window (ie paste) is raised to reflect the high water mark of the

46

observed window (ie cut). Because the requestor of this transition is modelled as unobserved, this
requires that the human user requested the cut and paste operation rather than any untrusted software
acting on their behalf. Where the implementation functionality desires that arbitrary data structures be
cut and pasted between windows, for example pictures which cannot be attributes unless they can be
guaranteed to be immutable, this can be modelled as the joining of the two window entities with a single
high water mark. Again tl.is must be requested by the human user.

Note that active software in SERCUS is generally modelled by window entities, but that this does not
necessarily require a visible representation on the users display. Another active entity in the operation
specifications is the worker entity used when the functionality requirement is split into a sequence of
transitions. This could be considered as modelling a procedure call. In other words the window calls a
procedure which carries out the sequence of transitions and then exits, returning control to the window.
This worker is only given the attributes required to carry out its tasks (parameters), and is generally
used when a regrade is required. It would be inappropriate to regrade the original requesting window,
even if it was returned to its original level after the sequence of transitions, as this could lead to either its
attributes being underprotected or it becoming cleared to see inappropriate information for the duration
of the sequence of transitions. It is important to remember that the model deals with secure transitions
and does not impose any ordering on the individually secure transitions. The separation of duty controls
on the worker entity imply that, in an implementation, the code is trusted not to abuse its privileges and
that its workspace is protected from observation, ie not implemented as an attribute. This is captured in
the model by the use of the evaluator role to justify the clearance and trust given to the worker.

As discussed in section 3.11, where a requirement has to be modelled as a sequence of individually
secure transitions, a desire for functional integrity requires that information be passed between them to
ensure that the later transitions act upon the results of the previous ones. The properties of schema
composition ensures that the attributes and entities identified in the signatures with the same name, are
the same value. Consequently, the Z specification does specify that later transitions act upon the desired
entities. However, providing functional integrity in this way implicitly requires that the composition of
transitions is trusted. In other words, not only would this require that the coac implementing the
individual transition be correct, but that they could be shown to be called in the correct order and with
the correct parameters. However, as these flows of parameters between transitions would not be
explicitly modelled in terms of entities being modified with attributes, the irodel itself could provide no
guidance to the implementation, such as which flows are downward.

However, neither is it appropriate to modify entities explicitly with all these parameter attributes, as in
many cases the actual information required depends on the implementation's representation of the
abstract attributes and the decision as to whether to prompt the human user for input. For example,
when a reference is named in the cupboard, the implementation could either choose to observe all the
information from the requesting window, or prompt the human user for the name to use. Another
example would be where the text of a window has the reference to a newly created document added to
it. At this abstract level the only property specified about text is the references it contains, however, the
implementation could also wish to include the literal representation of the new CDR number.

Therefore, this specification provides for functional integrity by the modification of entities which could
require parameters from previous transitions in the sequence with FLOW attributes. These are abstract
attributes representing whatever information the implementation requires, although it must be stressed
that this can only come from the nominated observed entities and unclassified control information. In
addition, in order to preserve their 'attributeness', ie immutability, any changes to the information that a
FLOW attribute is representing must result in a new attribute at the abstract level. Therefore the
implementation of FLOW attributes and sequencing transitions to provide the desired functionality
cannot result in undesirable flows of information.

It has been noted already, in sections 3.9 and 4.2, that the classification of the LOGIN entity does not
protect its attributes, ie user identities and passwords, from observation. It is useful to stress again the
fact that this information does not have a classifiaction associated with it in the same way as, for
example, documents do. The actual requirement is simply that this information is not observed or
modified 'inappropriately'. Thus, in terms of the Terry-Wiseman Model, which is solely concerned
with the flows of classified information, the protection of information without a classification requires
that the system owners are satisfied that there are no inappropriate transitions, and could also involve
encrypting the data. Thus the adequate protection of passwords can be viewed as a 'proof opportunity'.

47

Another example where the classification controls are too coarse is draft documents. Here the drafts are
classified at the clearance of the user since they are able to type information into the system up to this
level. In addition, the users can move information from windows into drafts, etc, and their windows are
classified at their clearance. However, the actual functionality requirement is that drafts are private to the
user until they have been given a final classification and journal and have been placed in the central
registry. Thus, although the confidentiality controls would permit any user sufficiently cleared to view
anothers draft, SERCUS has to ensure that this does not happen. This specification has chosen to
model this additional access control using the human identities that already existed for the separation of
duty controls. The operations concerning draft documents then simply check that the ID control attribute
from the draft and requestor are the same. Since each draft only ever belonged to a single user this
seemed to be an appropriate way to model this identity based access control. The modelling of more
general access control methods is discussed in [Harrold90a].

An implementation providing, for example, virtual machines or a hierarchical filing system, would have
no difficulty keeping the existence of another's draft objects hidden, and the id information and
additional check would not be required. In fact, the model's view that the existence of all entities is
freely visible and insistence that this is unclassified can lead to it being overstrong, particularly in the
area of secure databases. Work is in hand to produce a hierarchical version of the model which would
help with these considerations.

Associated with the problems of this additional access control on draft entities, is the potential signalling
channel through its high water mark. The software editing the draft can manipulate the level of the high
water mark on the basis of classified information, ie by choosing whether or not to access an object that
would cause the level to float higher, up to the clearance of the user. In a classification system with a
large number of caveats and categories there are many possibilities. This is not a problem until a new
document is created from the draft, as the high water mark is protected at the maximum level of the
encoded information (ie clearance of the user). The classification of the document reveals information
about the high water mark, either its exact value if the users always classify documents at the level of
the draft's high water mark, or at least that it was no higher than the document classification. However,
as this channel is only one bit per creation of a document and can only occur in SERCUS when the
human user on the Trusted Path creates a document, and since the untrusted software is 'memoryless'
between invocations, this is not coi,;idered to be a threat in SERCUS.

It has already been noted that where a requestor is unobserved this implies that the human user initiated
the transition using a Trusted Path and supplied the parameter3. It is also important to note the
implications of a transition where an entity is modified without being also observed, for example the
update of the highly classified journal. In such cases the journal must be unobserved in all
circumstances. In other words the update must never fail. Thus, the requestor believes the journal has
been modified even if, for example, it was already full. The implications of the requirement to audit, ie
observe, this high information were discussed in section 3.5. Finally, it is useful to note again the
implications of transitions where the requestors are unmodified, for example the regrade document
operation discussed in section 4.9. Here the requestors do not know whether all parties agreed to the
transition and it did in fact take place. Consequently the requestors need not all be classified at the same
level as they are unable to signal their information to each other through their decision as to whether the
transition may take place or not.

Section 3 provided several examples of the use of functions and relations to provide structure to
attributes, eg the ITEM attributes of cupboards and the function item to associate a name and reference
pair to each (section 3.6). This structuring is necessary because the model's view of functionality is
deliberately very abstract in order that its confidentiality controls may be generally applicable. Thus the
Other relation simply identifies the set of attributes contained in each entity and applies the security
axioms whenever attributes are added or removed from this set. Therefore should the items in a
cupboard be modelled by name and reference attributes, as in Figure 8a below, mixing the names up
would not be captured by the model's definition of a transition, and the security axioms would not be
applied.

48

Fieure 8a: Unstructured Attributes

CUPBOARD CUPBOARD

Shuffle
ref I memo association ref I note
ref 2 note _ -. ref 2 report
ref 3 report ref 3 memo

4 Other relation supplies the set

Iref 1. ref 2. ref 3. memo, note, revon 1

This is not a problem with the model but with the level of abstraction being used to model the
functionality. If there are important relationships between the various functionality aspects of an entity,
they must be modelled, and the simplest way is to model the relationships as attributes and provide a
means to recover the aspects of interest, as illustrated by Figure 8b.

Figure 8b: Structured Attributes

CUPBOARD CUPBOARD Item I item function yields (ref 1, memo)
Shuffle Item 2 (ref 2, note)

Item I association Item 4 Item 3 (ref 3, report)

Item 2 - - Item 5 Item 4 (ref 1, note)

Item 3 Item 6 Item 5 (ref 2, report)
Item 6 (ref 3, memo)

Other relation supplies the set;

(Item 1, Item 2. Item 3 1 (Item 4. Item 5. Item 6 1

Note that in the case of the events added to a journal (section 3.5) no functions are defined as the actual
information contained in an event is not of interest at this level of abstraction. Similarily with TEXT
attributes, only the function to supply the set of references contained in it is defined, as the ordering of
these references, the words or characters, the position of the cursor, etc, are not of interest at the level
of abstraction of this specification.

It is important to remember that the separation of duty controls do not always require the physical
presence of the 'n' requestors. In many cases the agreement of at least one of the parties is automated by
the use of trusted software, for example certain downgrades are justified using high water marks. This
is discussed further in [Harrold90b]. Also, although the separaticn of duty controls are modelled as
happening in parallel at the abstract level, they are implemented as a sequence. However, it is important
that any sequencing information does not introduce flows of information that were not considered at the
higher level. For example, as the regrade to a document is specified by the simultaneous agreement of
the user and security officer, the implementation will introduce extra structure to record the request until
the security officer authorises it. Should this request to regrade be observable by further entities this
introduces 'modification' to the document and a flow of information to this entity which was not
specified nor considered at the abstract level.

There are several examples where the justification for a downgrade has been specified by the use of an
evaluator role in the separation of duty, eg the downgrade to the worker entity to allow the unclassified
CDR to be updated when a new document is created (section 4.7). This has proved necessary in the
cases where the model itself cannot supply a justification because this rests on factors outside the scope
of the model. Examples of this include the cases where the implementation code is trusted not to mix up
variables of differing classifications; the downgrade is not considered to be a threat from the result of a
risk analysis (human judgement); or that certain procedural controls have been enforced. However, this
evaluator entity is not treated in quite the same way as other active entities as it is neither observed nor

modified by any transitions. The human evaluators of the system are not required every time, for
example, a document is created. They evaluate and approve the code instead, taking into account many
factors outside the scope of the model (eg development environment, etc), and will agree that the update
to the CDR as part of the creation of a document is an acccptable 'downward flow'. Thus, the
implementation code becomes 'trusted' and the evaluators are no longer directly involved. They provide
no information for the creation of each document and neither do they know any details of the documents
created. Therefore, the evaluator role could simply be viewed as indicating the places where code needs
to be 'trusted' to provide the desired functionality.

Finally, although each operation has been considered in relation to the five axioms defining the security
requirements, this has been informal. The opportunity exists for formally proving that the precondition
of each operation is true, ie the functionality is not contradictory to the security.

The model has been unforgiving in its insistence that a justification be given for each flow of
information that it considers to be 'downward'. In many cases these downward flows were 'obviously
secure' and the justification was trivial. However in other cases it provoked a lot of thought and the
realisation that the requirement was vulnerable to certain kinds of Trojan Horse attack. This is a major
advantage of the model, namely the fact that the controls are modelled along with the information they
protect and the interactions between them can be reasoned about. Another advantage is the fact that the
particular aspects of trust that are required are identified.

A significant amount of effort has gone into modelling the SERCUS requirements. Much of this was in
exploring the advantages and disadvantages of various approaches, and further papers are in preparation
which detail these arguments. Thus, although the specification given in this report is not the only
method, experience with other approaches has led to the conclusion that it is the most appropriate.

It must also be noted that modelling SERCUS has been an iterative process where certain classes of
operation were considered, often resulting in an improvement to the model or a clarification to its
interpretation. Thus the original modelling work began with the model presented in
[Terry&Wiseman89) and has concluded with the model presented in Annex B and in [Harrold90a].
Section 6 of [Harrold90a] details this evolution.

In summary, this report has illustrated the way in which the Terry-Wiseman Model can be used to
model the requirements of a non-toy application which requires that the confidentiality of its information
is assured.

Acknowlegements
Finally I would like to acknowledge the contributions of Simon Wiseman and Phil Terry, and also to
thank Peter Bottomley, Sharon Lewis and Andrew Wood for their comments on earlier drafts of this
report.

50

6. References

[Bottornley& SMITE - RSRE's Computer Architecture for Multi-level Security
Wiseman88] P C Bottomley, S R Wiseman

proceedings of Milcomp 1988, pages 25 - 30

[Harrold88] Formal Specification of a Secure Document Control System for SMITE
C L Harrold
RSRE Report 88002, February 1988

[1arrold89] An Introduction to the SMITE Approach to Secure Computing
C T, Harrold
Computers and Security journal, October 1989, 8 (1989) 495-505

[1rrold90a] The Terry-Wiseman Security Policy Model and Examples of Its Use
C L Harrold
RSRE Report 90001, March 1990

[Harrold90b] A Discussion about the Role of Separation of Duty in Maintaining Security
C L Harrold
to be published

[Kingetal87] Z: Grammar and Concrete and Abstract Syntaxes
S King, I H Sorensen, J Woodcock
Programming Research Group, Oxford University, July 1987

[Randel]90 Zadok User Guide
G P Randell
RSRE Memorandum 4356, January 1990

[Sennett87] Review of the Type Checking and Scope Rules for the Specification Language Z
C T Sennett
RSRE Report 87017, November 1987

[Spivey88] The Z notation: A Reference Manual
J M Spivey
Prentice-Hall International 1988. ISBM 0-13-983768-X

[Terry89] The SMITE Approach to Security
PF Terry
RSRE Report 89014, August 1989

[Terry&Wiseman89] A 'New' Security Policy Model
P F Terry, S R Wiseman
proceedings of the IEEE Symposium on Security and Privacy, Oakland, CA
May 1989, pages 215 - 228

[Wisemaneta188] The Trusted Path between SMITE and the User
S R Wiseman, P F Terry, A W Wood, C L Harrold
proceedings of the IEEE Symposium on Security and Privacy, Oakland, CA
April 1988, pages 147 - 155

[Wood88J A 7 Specification of the MaCHO Interface Editor
A W Wood
RSRE Memorandum 4247, November 1988

[Woodward87] Exploiting the Dual Nature of Sensitivity Labels
J P L Woodward
proceedings of the IEEE Symposium on Security and Privacy, Oakland, CA
April 1987, pages 23 - 30

51

Annex A: An Overview of the Z Notation

Z is a powerful mathematical notation that has been developed by the Programming Research
Group at Oxford University. The underlying basis of Z is standard set theory, and it makes use of
the associated notation. Properties about sets are described using predicate calculus. A Z
specification is structured into self contained parts using schemas.

New sets are introduced between square brackets, for example, [BOOK] introduces the set of all
possible books, or using == followed by a definition of the set.

{ } empty set
CELES is a member of the set on the RHS
4E LHS is not a member of the set on the RHS

set on the LHS is a subset of the one on the right (possibly equal)
C set on the LHS is a proper subset of the one on the right (never equal)
u result is the union of the two sets
nresult is the intersection of the two sets
U distributed union of a set of sets, result is the union of all sets

result is the set equal to the LHS with members of the RHS removed
inequality

number of elements in a set
RNI the set of strictly positive natural numbers
x : T declaration, x is an element drawn from the set T
{ D I * P 1 the set of t's from the declarations D such that the predicate P holds
FP powerset, ie the set of all possible subsets of a particular set

Thus, childrens : P BOOK, says that the set of books for children is 'drawn from the set of subsets' of
the set BOOK, ie childrens books are a subset of all books.

A relation may be viewed as a set of ordered pairs. Functions are a special type of relation
where there is a single element in the range for each element of the domain. Thus the operators
defined for sets are applicable to both functions and relations.

dom domain of a relation, ie all the first elements of the ordered pairs
rng range of a relation, ie all the second elements of the ordered pairs
fst first element of an ordered pair

relation
total function, domain is all possible members of the set

-+-> partial function
>+-> injective partial function, each element in range associated with only one in domain
>--+ injective total function

maplet, graphic way of expressing an ordered pair
I I relational image, RLSD the set related by the relation R to the members of the set S
R- 1 inverse of the relation R
R I S range restriction, restrict relation R to those range elements in set S
R P S range substraction, take out of relation R those pairs with range element in set S
S 4 R domain restriction, restrict relation R to those domain elements in set S
S 4 R domain substraction, take out of relation R those pairs with domain element in set S
S 1 R relational composition, ie S followed by R (type of rng S must equal type of dom R)
f ® g functional override, replace relevant pairs in function f with g. (dom g If) U g

list separator
A, and, not
=*, implication, equivalence
V x : T P for all x of type T predicate P holds
3 x : T I D • P there exists an x of type T for which predicates D and P hold
31 x: T I D • P there exists a unique x, ie one and only one x satisfying D and P

Predicates Where clause, shorthand for 3 D * P. Declarations only in scope until
where end of predicates.

Declarations

declaration an axiomatic definition, the declarations are global
the predicates define properties about thempredicates

name a schema, the signature declares some variables and their types
signature the predicates define properties about them

predicates the objects declared in one schema are made available to another by
including the name of the schema in the signature. They are then in scope
until the end of this schema. Schemas can also be used as types.

Axiomatic definitions and schema names are in scope from their point of introduction until the
end of the Z module.

The following conventions are used for variable names in schemas representing operations:

undashed basename state before
dashed, ie ending in" state after
ending in ? inputs or parameters
ending in! outputs or results

s.r project the variable t from the schema variable s
Sschema definition
S A T S and T, resulting schema is formed by merging the declarations from S and T and

by conjoining their predicates.
S 0 T schema composition, where the basenames are the same the state after components

in S become the initial state components in T. All other components of the schemas
are anded together.

S E) T schema overide, schema S unless T is applicable (ie its precondition is true),
(S A -,pre T) v T

Annex B: The Formal Model and Its Interpretation

This annex contains the Z specification of the Terry-Wiseman Model that is used throughout
this paper, and is essentially section 3 RSRE report 90001 "The Terry-Wiseman Security Policy
Model and Examples of Its Use".

Set Definitions

First the sets of all possible entities and attributes are introduced.

[E,A]

Next, a subset of all possible attributes is identified as representing classifications. It is also
necessary to bring in the notions of the dominance relationship, >=, between classifications, and
the least upper bound, LUB, and greatest lower bound, GLB, operators on sets of classifications. As
these concepts are well understood, the actual definitions have been omitted. Thus, the
classification of an entity will be represented by an attribute drawn from the set called CLASS.
Note that in some cases this may be interpreted as a clearance.

CLASS: P A

>= : CLASS +- CLASS
GLB, LUB : P CLASS -4 CLASS

A further subset of attributes are identified as representing the various types of TRUST that can
be given to active entities. Three particular types of TRUST attribute are identified.

The dont-signal attribute will be given to those entities which are assumed not to exploit
signalling channels, or otherwise to write classified information into the controls. The basis of
this assumption may be that a human is in control, or that some other controls are being
deployed to close the channel.

The faithful attribute will be given to entities which always do the bidding of a human user, in
other words the human user is accountable for the actions of these entities, whether directly
through a trusted path, or indirectly because the software will always make the same
decision/actions as the human. Faithful entities must be both functionally correct and free from
Trojan Horses, ie proven to meet their specification.

Finally, the creator attribute will be given to those entities which are trusted to correctly set up
the security controls on any new entities. The basis of this trust is application specific.

TRUST: P A
dont-signal, faithful, creator : TRUST

The set of all possible roles and the unique identifiers of the human users of the system are
identified as further subsets of all possible attributes. No specific roles are identified here as
these are application specific. However, particular examples could be security officer, librarian,
bank manager, counter clerk or system owner.

ROLE: P A
ID :PA

A further subset of attributes is identified to represent all possible conflicts, ie the n man rules,
for the separation of duty controls. A function is defined, conflict roles, which gives the numbers of
each type of role required. For example, the conflict attribute -of a document could require one
security officer and one ordinary user to agree to any alteration in its controls. All CONFLICT
attributes uniquely have such numbers and roles associated with them.

CONFLICT: P A

conflict-roles : CONFLJCT >-+ (ROLE 4* M]

{} f rng conflict-roles

Finally the set of attributes which represent references to entities, ie the means of addressing
entities, is identified.

REF: IPA

The State

The state of the machine is given by the following schema, which structures the state into a
number of named functions and relations between entities and attributes.

STATE
Class E -94 CLASS
Trust: E4 TRUST
Role : E -ROLE
Id : E-+-) ID
Conflict : E - CONFLICT
Ref : E >-) REF
Other : E +-*A

Class is the partial function which supplies the classification attribute of an entity. It is a
function (many-to-one) as entities may only have a single classification and partial as nothing is
specified about those entities which do not exist in the current state, ie those yet to be created or
which have been destroyed.

Trust is the relation which -?plies the various types of trust invested in an active entity. It is a
relation (many-to-many) as .,atities may have more than one trust attribute, and several entities
may be similarily trusted.

Role is the relation which supplies the particular role (or roles) that an active entity plays in the
system.

Id is the function which supplies the unique identity of the human user that an active entity is
representing. It is a function as entities may represent at most one human, and partial as not all
entities are active and so that entites may be both created and destroyed.

Conflict is the relation which identifies the various numbers and types of roles that must
cooperate in any alteration to the security controls of an entity. It is a relation so that more than
one conflicting set may be specified. Note that a single role is permissable even though it does
not provide for any conflict of interest. This allows for an application to have very privileged
and trusted entities, for example the system owners themselves. Also, if the requirement is that
the controls of an entity are unalterable this should not be specified as no roles but as the set of
all possible roles. This is because an empty set could allow unfaithful entities acting on their
own to alter the controls.

There is one conflict set which covers modifications to all the security controls. However, there
is no reason why a slightly different model could not be specified, with different conflicts for
different controls, if this was the functiinality required.

Ref supplies the means to address an entity, ie its reference. This is a function as each entity has
a single reference, and partial to allow entities to be created and destroyed. The function is
injective (one-to-one) as references may only be associated with a single entity, thus making
references unique.

Other encompasses all the functionality aspects of the system, and is simply a relation between

entitites and attributes. Further, it is the attributes in the range of this relation which are
considered to be protected by the controls. Therefore, this model is of all possible applications
where confidentiality is the prime concern.

Note that the control type attibutes may be found in the functionality attributes, for example,
entities may contain references to other entities. Further, the various sets of attributes are not
necessarily disjoint, and therefore a particular attribute may actually represent different things
depending on context. For example, should integers be used to represent both classifications and
months of the year, then the number 1 may mean Top Secret when it is representing the
classification of an entity or January when part of the functionality.

Supporting Definitions

In defining the security policy model a number of functions are needed to characterise
transitions in terms of the differences between states.

The following schema defines the symmetric set difference operator, T. This supplies all the
differences between two sets. A second operator, ,, is defined. This turns a relation into a function
giving a set.

M XY]

(_TJ :(PXxPX)-4PX
4 : (X -.) Y) -4 (X -f4 IP Y)

Vx,y:PX xTy= (xuy)\(xny)
V r :X 4 Y;x :domr. dom(I r)= domr

I r(x)= rl {x} I

The following schema defines an operator, flatten, which returns all the entity-attribute
relationships that comprise a state. All the entities that exist in a state may then be discovered,
using the operator entities, which applies the domain operation to a flattened state.

flatten : STATE -- (E +-+ A)
entities : STATE -P t E

V s : STATE • flatten s = s.Class u s.Trust u s.Role u. sJd u s.Conflict u s.Ref u s.Other
entities s = dom (flatten s)

State Transitions

State transitions are considered to be requested by a set of entities, called the requestors. This is a
set, rather than a single entity, in order to capture the notion of separation of duty for integrity.
The second set of entities identified in the request are those entities which were observed during the
transition. An entity is observed if its contents (ie the attributes defined by the Other relation)
had any influence over the outcome of the state transition. It is very important that in an
implementation entities not identified as observed have no influence over the outcome of a state
transition. This observed set is identified in the transition request because although it is possible
to examine the state to identify the receivers of information flow, ie those entities which had
attributes changed, gained or lost, it is impossible to identify the source of the flow in the same
way.

R
requestors, observed : P E

Note that the requestors of a state transition need not be observed. For example a command line
interpreter decides what action to take on the basis of human input rather than its state. Also,
the requestors need not be modified by the transition. Each requestor may say yes or no to the
change as appropriate but will not necessarily remember whether all concerned agreed and the
transition took place or not. For example, security officers may not remember whether they
authorised a particular downgrade, although they may be able to look up the fact in a journal at a
later date.

Valid state transitions are given by the following schema, which identifies the request and the
before and after states. There are two constraints put on a valid state transition. The first is that
transitions only occur if they are requested by entities that exist in the current state, and
secondly, that the observed entities also exist.

TRANSITION
r?: R
s,s : STATE

{ c r?.requestors a entities s
r?.observed a entities s

The Security Axioms

This section formally defines security axioms to provide confidentiality and integrity.

Confidentiality is divided into two separate concerns. The most obvious aspect of
confidentiality is that information is not moved from highly classified to lowly classified
containers. Relating this to the world of people looking at documents, for example, the windows
of users' displays, which will be labelled with their clearance, cannot gain attributes from a
document classified higher than that clearance.

The following schema, noflows down, identifies the set of entities whose view of the state was
in some way modified. This view excludes the control attributes, as other axioms ensure that the
controls on an entity are not classified. It also excludes entities which were destroyed, but does
include newly created entities. These modified entities are therefore the receivers of the
information flow. The source of the flow is simply those entities whose contents were observed.

Thus the axiom simply states that after the transition the lowest classification of the modified
entities must dominate the highest classification of observed information before the transition.
Thus information cannot flow down into either existing or newly created entities. Note that
information may flow unconstrained between entities without classifications, and hence it is
necessary to ensure that all entities have a classification, see the Correctness aspect of integrity
below.

noflows down
TRNSITION

GLB s'.ClassI modified I >= LUB s.Class[r?.observed I
where

modified == dom (s.Other T s'.Other) r) entities s'

The second aspect of confidentiality is that signalling channels are not exploited by untrusted
software, formally expressed by the nosignalling axiom below. The signalling channels identified
as changed controls capture the channels through changing any of the security controls on
existing entmtes and also through the creation and deletion of entities. The non-exploitation is
expressed by insisting that should any of these aspects of the state be altered by a transition,
then all the requestors must possess the dont.signal trust attribute.

no_signalling
TRANSITION

changed-controls {} = (V r: r?.requestors • dont.signal e s.Trustl {r} 1)
where

changed-controls = dom(s.Class T s'.Class)
u dom(s.Trust T s'.Trust)
u dom(s.Role T s'.Role)
u dom(sJd T s'Jd)
u dom(s.Conflict T s'.Conflict)
u dom(s.Ref T s'.Ref)
u (entities s T entities s')

Thus, the confidentiality of information can be expressed as the conjuction of the above two

aspects.

Confidentiality - nojflows down A no-signalling

In this model of security the prime concern is the confidentiality of information. Consequently
the integrity of the controls that enforce confidentiality is also of concern. However it must be
stressed that the integrity of the protected information is an application specific issue. Integrity
is divided into two aspects. Firstly, entities must have the necessary control attributes in order
that the confidentiality controls may be applied, and secondly these controls must be in some
way appropriate to the information they protect.

The Correctness schema simply insists that in order for any transition to occur all the entities
involved in the transition must have a classification attribute. Thus the confidentiality controls
may be applied. These entities must also have a reference attribute in order to be addressable by
an implementation. Nothing further is said about the particular addressing mechanism.

Note that not all entities need have trust, role or id attributes. These are only required by the
active entities, ie those requesting transitions, and only then if they request security critical
transitions. The particular separation of duty controls placed on entities is application specific.
However, note that the set of conflicting roles for separation of duty should be non-empty,
otherwise, unfaithful entities acting on their own could potentially alter the controls. Thus the
following schema insists that all the entities involved in a transition have a classification,
reference and at least one conflict attribute. Similarily a transition must preserve these
properties. Nothing is said about entities destroyed by a transition except that they had the
necessary attributes beforehand.

Correctness
TRANSITION

before dom s.Class A after a dom s'.Class
before dom s.Ref A after a dor s'.Ref
before a dom s.Conflict A after a dor s'.Conflict

where
involved == r?.requestors

u r?.observed
u dom(s.Class T s'.Class)
u dom(s.Trust T s'.Trust)
u dom(s.Role T s'ARole)
u dom(sJd T s'Jd)
u dom(s.Conflict T s'.Conflict)
U dom(sRef T s'.Ref)
u dom(s.Other T s'.Other)

before == involved n entities s
after == involved r) entities s'

Thus, the first aspect of integrity basically ensures that entities have the correct attributes in
order that the confidentiality controls may be applied. The second aspect of integrity is that
these control attributes are in some way appropriate to the information they protect. This is
divided into two parts. The first concerns itself with modifications to controls of existing
entities and the second with the controls given to new entities.

Separation of duty is used as the means to ensure the appropriateness of changes to security
controls of existing entities. The Separation of Duty axiom below states that whenever any
controls were modified by a transition there were sufficient requestors with the necessary
conflicting roles, and further that these requestors were acting on behalf of an appropriate
number of different human users, ie they possessed the faithful trust attribute, and had different ID
attributes. It is important to note that because of possible collusions amongst the roles,
separation of duty does not in itself guarantee security. However, sensible use of the mechanism
does provide the best control that can be realistically achieved.

Separation of Duty
TRANSITION

V e : modified controls •
3 f: ID -+'4 ROLE If a s.ld't t (faithful requestors I s.Role)•4 f"t l (#._) (s.Conflict ' conflict-roles)9 {e} I

where
modifiedcontrols == entities s n entities s' n (dom(s.Class T s. Class)

u dor(s.Trust T s'.Trust)
u dom(s.Role T s'.Role)
L dom(sJd T s'Jd)
u dom(s.Conflict T s'.Conflict)
L) dom(s.Ref T s'.Ref)
)

faithful.requestors == { r : r?.requestors I faithful e s.Trustl {r} I }

The second aspect of appropriateness concerns itself with the controls given to new entities.
The TrustedCreation axiom below states that whenever entities are created by a transition, at
least one of the requestors was trusted to correctly set up the controls, ie possessed the creator trust
attribute. Note that this trust covers the appropriateness of the controls that are given to the
entity and also ensures that no necessary controls are omitted. Also note that the classification
given to new entities is constrained by the no~flowsdown axiom which insists that it be at least as

high as the highest observed information. Establishing the basis of creator trust is application
specific, and could, for example, also be enforced using separation of duty controls.

Trusted CreationSTRANSTION

entities s \ entities s }=,creator e s.Trusti r?.requestors

Thus, ensurance of the appropriateness of control attributes is the combination of separation of

duty controls upon any modifications and trust upon creation.

Appropriateness _ Separation of Duty A TrustedCreation

Integrity is seen to be the combination of the two aspects of correctness and appropriateness.

Integrity a Correctness A Appropriateness

Finally, security is defined to be the confidentiality of information together with the supporting
integrity of the controls that are used to enforce the confidentiality.

Security a Confidentiality A Integrity

The following line of Z defines this annex to be a module and exports the definitions for use in
other specifications.

policy model keeps E, A, CLASS, >=, GLB, LUB, TRUST, dont signal, faithful, creator, ROLE, ID,
CONFLICT, conflict roles, REF, STATE, -, 1,flatten, entities, R, TRANSITION,
noflows down, no signalling, Confidentiality, Correctness, Separation of Duty
Trusted_Creation, Appropriateness, Integrity, Security

REPORT DOCUMENTATION PAGE DRIC Reference Number (if known) ..

O verall security classificatio, of sheet U N C LA S S IF IE D ...
(As far as possible this shee, should contain only unclassified information. If it is necessary to enter classified information, the field concerned
must be marked to indicate tre classification eg (R), (C) or (S)

Originators Reference/Rep ,il No. Month Year

REPORT 90011 JULY 1990

Originators Name and Location
RSRE, St Andrews Road
Malvern, Worcs WR14 3PS

Monitoring Agency Name and Location

Title

AN EXAMPLE SECURE SYSTEM SPECIFIED USING THE
TERRY-WISEMAN APPROACH

Report Security Classification Title Classification (U, R, C or S)

UNCLASSIFIED U

Foreign Language Title (in the case of translations)

Conference Details

Agency Reference Contract Number and Period

Project Number Other References

Authors Pagination and Ref

HARROLD, C L 60

Abstract

This report presents the specification of operations for a secure document handling system
(SERCUS). The specification uses the Terry-Wiseman Security Policy Model and therefore acts
as an example of the modelling approach. The specification uses the mathematical notation Z,
and consequently also acts as an example of the use of Z in specifying secure systems.
However, it must be noted that an appreciation of SERCUS, the model and modelling approach
can usefully be gained even if the formal specifications are not read. The Terry-Wiseman Model
and its interpretation are given as an Annex to this report.

Abstract Classification (U,RC or S)

U

Descriptors

Distribution Statement (Enter any limitations on the distribution of the document)

UNLIMITED

